Math, asked by sharmila54, 11 months ago

solve x^8-x^5+x^3-1=0

Answers

Answered by dhirajreddy
1

Answer:

1 answer is this equation 0.16

Answered by SrijanShrivastava
1

  {x}^{8}  -  {x}^{5}  +  {x}^{3}  - 1 = 0

 {x}^{5} ( {x}^{3}  - 1) + ( {x}^{3}  - 1) = 0

( {x}^{3}  - 1)( {x}^{5}  + 1) = 0

Therefore, the eight solutions are:

x _1  = 1

 x_{2} =  -  \frac{1}{2}  +   \frac{ \sqrt{ 3} }{2} i

 x_{ 3 } =  -  \frac{1}{2}  -  \frac{ \sqrt{ 3 } }{2} i

 x_{4} =  - 1

x_5 =  \frac{   1 -  \sqrt{5} }{4}  +   \frac{ \sqrt{ 10  +  2 \sqrt{5} } }{4} i

x_6 =  \frac{1 -  \sqrt{5} }{4}  -  \frac{ \sqrt{  10  + 2 \sqrt{5} } }{4} i

x_7 =  \frac{ 1 +  \sqrt{5} }{4}  +  \frac{ \sqrt{  10   -  2 \sqrt{5} } }{4} i

x_8 =  \frac{1 +  \sqrt{5} }{4}   -  \frac{ \sqrt{ 10  -  2 \sqrt{5}  } }{4} i

where,

i =  \sqrt{ - 1}

Similar questions