Math, asked by miranhazarika323, 7 hours ago

Solve : x+a/x-a=b-a/b+a​

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{x + a}{x - a}  = \dfrac{b - a}{b + a}

We know,

If a : b : : c : d, then

\boxed{\tt{  \frac{a + b}{a - b}  =  \frac{c + d}{c - d} \: is \: called \: componendo \: and \: dividendo }}

So, On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{x + a + x - a}{x + a - (x - a)}  = \dfrac{b - a + b + a}{b - a - (b + a)}

\rm :\longmapsto\:\dfrac{2x}{x + a - x  +  a}  = \dfrac{2b}{b - a - b  -  a}

\rm :\longmapsto\:\dfrac{2x}{2a}  = \dfrac{2b}{ - 2a}

\bf\implies \:x =  \:  -  \: b

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more

If a : b : : c : d, then

\boxed{\tt{  \frac{a}{c} =  \frac{b}{d}  \: is \: called \:alternendo}}

\boxed{\tt{  \frac{b}{a} =  \frac{d}{c}  \: is \: called \:invertendo}}

\boxed{\tt{  \frac{a - b}{b} =  \frac{c - d}{d}  \: is \: called \:dividendo}}

\boxed{\tt{  \frac{a  +  b}{b} =  \frac{c  +  d}{d}  \: is \: called \:componendo}}

Answered by Missincridedible
2

\huge \color{navy}\maltese \bold \color{red} \: answer

Attachments:
Similar questions