Math, asked by alexsarkar2752, 4 months ago

solve:x-a/x+b=a+b/a-b​

Answers

Answered by mathdude500
0

 \red{ :\implies \tt \:  Solve \: \dfrac{x - a}{x  +  b}  = \dfrac{a + b}{a - b} }

 \tt \: :\implies \: \dfrac{x - a}{x  +  b}  = \dfrac{a + b}{a - b}

On Subtracting 1 from each term, we get

 \tt \: :\implies \: \dfrac{x - a}{x  +  b}  - 1 = \dfrac{a + b}{a - b} - 1

 \tt \: :\implies \: \dfrac{x - a - x  -  b}{x  +  b}  = \dfrac{a + b - a + b}{a - b}

 \tt \: :\implies \: \dfrac{ - b - a}{x  +  b}  = \dfrac{2 b}{a - b}

 \tt \: :\implies \: 2b(x  +  b) =  - (b  +  a)(a - b)

 \tt \: :\implies \: 2bx  +   {2b}^{2}  = (b + a)(b - a)

 \tt \: :\implies \: 2bx =   {b}^{2}  -  {a}^{2}   -   {2b}^{2}

 \tt \: :\implies \: 2bx =  -  {b}^{2}  -  {a}^{2}

 \tt \: :\implies \: x = \dfrac{ - ( {b}^{2}  +   {a}^{2})}{2b}

Verification :-

Consider LHS,

We have,

 \tt \: :\implies \: \dfrac{x - a}{x  +  b}

 \tt \: :\implies \: on \: substituting \: x = \dfrac{ - ( {b}^{2}  +   {a}^{2})}{2b}  \: we \: get \:

 \tt \: :\implies \: \dfrac{\dfrac{ - ( {b}^{2}  +   {a}^{2})}{2b} - a}{\dfrac{ - ( {b}^{2}  +   {a}^{2})}{2b}  +  b}

 \tt \: :\implies \: \dfrac{\dfrac{ - ( {b}^{2}  +   {a}^{2}) - 2ab}{2b}}{\dfrac{ - ( {b}^{2}  +   {a}^{2}) +  {2b}^{2} }{2b}}

 \tt \: :\implies \: \dfrac{ - ( {b}^{2} +  {a}^{2} + 2ab)  }{ -  {a}^{2}  -  {b}^{2} +  {2b}^{2}  }

 \tt \: :\implies \:  - \dfrac{ {(b + a)}^{2} }{ {b}^{2}  -  {a}^{2} }

 \tt \: :\implies \:  - \dfrac{ {(b + a)}^{2} }{(b + a)(b - a)}

 \tt \: :\implies \:  - \dfrac{b + a}{b - a}

 \tt \: :\implies \: \dfrac{a + b}{a - b}

➦ LHS = RHS

\large{\boxed{\boxed{\bf{Hence, verified}}}}

Similar questions