Math, asked by damayantibank, 4 months ago

solve
(x^a/x^-b)^a-b × (x^b/x^-c)^b-c × (x^c/x^-a)^c-a =1​

Attachments:

Answers

Answered by BrainlyPopularman
14

TO PROVE :

 \\ \bf \implies \left( \dfrac{x^a}{x^{-b}} \right)^{a-b} \times \left( \dfrac{x^b}{x^{-c}} \right)^{b-c}\times \left( \dfrac{x^c}{x^{-a}} \right)^{c-a} =1 \\

SOLUTION :

• Let's take L.H.S. –

 \\ \bf \:  \:  =  \:  \: \left( \dfrac{x^a}{x^{-b}} \right)^{a-b} \times \left( \dfrac{x^b}{x^{-c}} \right)^{b-c}\times \left( \dfrac{x^c}{x^{-a}} \right)^{c-a}\\

 \\ \bf \:  \:  =  \:  \:(x^{a + b} )^{a-b} \times (x^{b + c})^{b-c} \times (x^{c + a} )^{c - a}\\

• We know that –

 \\ \bf \longrightarrow \pink{{({a}^{m})}^{n} =  {a}^{mn}}\\

• So that –

 \\ \bf \:  \:  =  \:  \:(x)^{(a + b)(a-b)}\times(x)^{(b + c)(b-c)} \times (x)^{(c + a)(c - a)}\\

 \\ \bf \:  \:  =  \:  \:(x)^{ {a}^{2} -  {b}^{2} }\times(x)^{ {b}^{2} -  {c}^{2} } \times (x)^{ {c}^{2} -  {a}^{2}}\\

 \\ \bf \:  \:  =  \:  \:(x)^{({a}^{2} -  {b}^{2}) + ({b}^{2} -  {c}^{2}) + ({c}^{2} -  {a}^{2})} \\

 \\ \bf \:  \:  =  \:  \:(x)^{({a}^{2} -  {b}^{2}+{b}^{2} -  {c}^{2}+{c}^{2} -  {a}^{2})} \\

 \\ \bf \:  \:  =  \:  \:(x)^{0} \\

 \\ \bf \:  \:  =  \:  \:1 \\

 \\ \bf \:  \:  =  \:  \:R.H.S.\\

 \\ \bf \implies Hence \:  \: Proved\\

Answered by Anonymous
1

Attachments:
Similar questions