Solve (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0
Answers
Answered by
2
Given: The equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0
To find: Solve the given equation.
Solution:
- Now the equation given is (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0
- Expanding it, we get:
x² - (a + b)x + ab + x² - (b + c)x + bc + x² - (c + a)x + ca
3x² - 2(a + b + c)x + (ab + bc + ca)
- Now discriminant will be:
D = b^2 - 4ac = 0
D = {2(a + b + c)}² - 4(ab + bc + ca)(3) = 0
4{a² + b² + c² + 2(ab + bc + ca)} -12(ab + bc + ca) = 0
a² + b² + c² - ab - bc - ca = 0
2a² + 2b² + 2c² - 2ab - 2bc - 2ca = 0
(a - b)² + (b - c)² + (c - a)² = 0
If a = b = c then roots are equal.
Answer:
a = b = c if roots of given equation are equal.
Similar questions