Math, asked by Anilkumar1423, 9 months ago

Solve X/a + y/b = a + b
And x/a^2 + y/b^2 = 2

Answers

Answered by Delta13
3

GIVEN

 \frac{x}{a}  +  \frac{y}{b}  = a + b \\  \\  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} }  = 2

SOLUTION

We will be solving the equations using Elimination method.

  =  > \frac{x}{a}  +  \frac{y}{b}  = a + b \\ \\  taking \: lcm  \\ \\  =  >  \frac{bx + ay}{ab}  = a + b \:  \\  \\  =  > bx + ay = (a + b)ab \\  \\  =  > bx + ay =  {a}^{2} b + a {b}^{2}  \:  -  -  -  - (1)

Now,

 =  >  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} }  = 2 \\  \\taking \: lcm \:  \:  \\  \\   =  >  \frac{{b}^{2}x +  {a}^{2}  y}{ {a}^{2} {b}^{2}  }  = 2 \\  \\  =  > b {}^{2}x + a {}^{2}y   = 2 {a}^{2}  {b}^{2}  \:  -  -  -  - (2)

Now we will multiply the equation by a suitable constant to make the coefficients of any one of the variables equal so that we can eliminate it. Here, We will multiply bx in eq(1) by b so that it will give b²x like eq(2).

 b \times (bx + ay =  {a}^{2}b + a {b}^{2}  ) \\  1 \times   (b {}^{2} x +  {a}^{2} y = 2a {}^{2} b {}^{2} ) \\  \\   \implies \\  {b}^{2} x + aby =  {a}^{2} b {}^{2}  + ab {}^{3}  \\   {b}^{2} x +  {a}^{2} y = 2 {a}^{2}  {b}^{2}  \\  -  \:  \:  \:  \:  \:  \:  -  \:  \:  \:  \:  \:  \:   =   -   \:  \:  \:  \:  \:  \: (subtracting) \\   we \: get \\  \\  \cancel{ {{b }^{2} x}} \:  + aby \:  =  {a}^{2}  {b}^{2}  + ab {}^{3}  \\   \cancel{  - {b}^{2}x }  -  {a}^{2} y =  - 2 {a}^{2} b {}^{2}  \\  \\  \small  =  > ( aby -  {a}^{2} y )=  ({a}^{2} b {}^{2}  + ab {}^{3}  - 2 {a}^{2} b {}^{2} )  \\  \\  =  > (ab -  {a}^{2} )y =( ab {}^{3}  -  {a}^{2} b {}^{2} ) \\  \\ we \: will \: take \: common \:  \\  \\  =  > a(b - a)y = a {b}^{2} ( {b} - a) \\  \\  =  > y \:  =  \frac{ab {}^{2}( \cancel{b - a} )}{a( \cancel{b - a})}  \\  \\  =  > y =  \frac{a {b}^{2} }{a} \\  \\  =  > y =  { \frac{ \cancel {a} \: b {}^{2} }{ \cancel{a}} } \\  \\  \implies \: y \:  =  {b}^{2}

Putting value of y in eq(2)

 \implies {b}^{2}x  +  {a}^{2}  {b}^{2}  = 2 {a}^{2}  {b}^{2}  \\  \\ \implies  {b}^{2} x \:  = 2 {a}^{2} b {}^{2}  -  {a}^{2} b {}^{2}  \\  \\  \implies \:  {b}^{2} x =  {a}^{2} b {}^{2}  \\  \\  \implies \: x =  \frac{ {a}^{2}b {}^{2}  }{ {b}^{2} }  \\  \\  \implies \: x =  \frac{ {a}^{2} \:  \cancel{ {b}^{2} } }{ \cancel{b {}^{2} }}  \\  \\  \implies \: x \:  =  {a}^{2}

x = a²

y = b²

Hence, the value of x is a² and y is b².

If it helps you then Mark as brainliest.

Similar questions