Math, asked by kunjanschoudhary, 29 days ago

solve x& y by cross multiplication method x+y=a+b. &. ax-by=a^2-b^2​

Answers

Answered by dylandynamic4235p
0

Answer:

x+y = a+b

x = a+b-y

x = a+b-y,y∈ℝ,a∈ℝ,b∈ℝ

Hope this helps

MARK AS BRAINLIEST

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given pair of lines are

\rm :\longmapsto\:x + y = a + b

and

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}

Now,

Using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf 1 & \sf a + b & \sf 1 & \sf 1\\ \\ \sf - b & \sf {a}^{2} - {b}^{2} & \sf a & \sf - b\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ {a}^{2} -  {b}^{2} + b(a + b)}  = \dfrac{y}{a(a + b) - 1( {a}^{2}  -  {b}^{2})}  = \dfrac{ - 1}{ - b - a}

\rm :\longmapsto\:\dfrac{x}{ {a}^{2} -  {b}^{2} + ba +  {b}^{2} }  = \dfrac{y}{ {a}^{2}  + ab -{a}^{2} + {b}^{2}}  = \dfrac{ - 1}{ - (b + a)}

\rm :\longmapsto\:\dfrac{x}{ {a}^{2}  + ab}  = \dfrac{y}{ {b}^{2}  + ab}  = \dfrac{1}{a + b}

\rm :\longmapsto\:\dfrac{x}{a({a} + b)}  = \dfrac{y}{b({b}+ a)}  = \dfrac{1}{a + b}

Multiply by a + b, we get

\rm :\longmapsto\:\dfrac{x}{a}  = \dfrac{y}{b}  = 1

\bf\implies \:x = a \:  \:  \:  \: or \:  \:  \:  \: y = b

Verification :-

Consider Equation (1)

\rm :\longmapsto\:x + y = a + b

On Substituting x = a and y = b, we get

\rm :\longmapsto\:a + b = a + b

Hence, Verified

Consider Equation (2)

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}

On Substituting the values of x and y, we get

\rm :\longmapsto\:a(a) - b(b) =  {a}^{2} -  {b}^{2}

\rm :\longmapsto \:  {a}^{2}  -  {b}^{2} =  {a}^{2} -  {b}^{2}

Hence, Verified

Similar questions