Math, asked by zahranazir, 10 months ago

solve x and y :- 2/x+y + 3/x-y=1 , 8/x+y - 7/x-y = 5/6​

Answers

Answered by aashijainvcc
1

Answer:

x=4;y=0

Step-by-step explanation:

I hope so it will help u

Answered by harshitha926594
3

Answer:

 \frac{2}{x + y} +  \frac{3}{x - y}  = 1 \\  \frac{8}{x + y}  -  \frac{7}{x - y}  =  \frac{5}{6}  \\  \\ Let, \:  \:  \frac{1}{x + y}  \:  \: be \:  \: u \:  \: and \:  \:  \frac{1}{x - y}  \:  \: be \:  \: v \\  \\ 2u + 3v = 1 \:  \:  \: \:  \:  \:  (1) \\ 8u - 7v =  \frac{5}{6}  \:  \:  \:  \:  \: (2) \\  \\ 2u + 3v = 1 \\ 2u = 1 - 3v \\ u =  \frac{1 - 3v}{2}  \\  \\ 8u - 7v =  \frac{5}{6}  \\ 8( \frac{1 - 3v}{2} ) - 7v =  \frac{5}{6}  \\  \frac{8 - 24v}{2}  - 7v =  \frac{5}{6}  \\  \frac{8 - 24v - 14v}{2}  =  \frac{5}{6}  \\  \frac{8 - 38v}{2}  =  \frac{5}{6}  \\ 6(8 - 38v) = 2 \times 5 \\ 48 - 228v = 10 \\ 48 - 10 = 228v \\  \frac{38}{228}  = v  \\  \boxed{ \underline {\underline{ \frac{1}{6}}}  = v }\\  \\ 2u + 3v = 1 \\ 2u + 3( \frac{1}{6} ) = 1 \\ 2u +  \frac{1}{2}  = 1 \\ 2u = 1 -  \frac{1}{2}  \\  2u = \frac{2 - 1}{2}  \\ u =  \frac{1}{2}  \div 2  \\ u =  \frac{1}{2}  \times  \frac{1}{2}  \\  \boxed{u = \underline {\underline{ \frac{1}{4} }}} \\  \\  \frac{1}{x + y}  = u \\  \frac{1}{x + y}  =  \frac{1}{4}  \\  \boxed{ \boxed{4 = x + y}}  \\  \\  \frac{1}{x - y}  = v \\  \frac{1}{x - y}  =  \frac{1}{6}  \\ \boxed{ \boxed{6 = x - y}} \\ 6 + y = x \\ \\  x + y = 4 \\ (6 + y) + y = 4 \\ 6 + y + y = 4 \\ 6 + 2y = 4 \\ 2y = 4 - 6 \\ y =  \frac{ - 2}{2}  \\ \boxed{ \boxed{y =  \underline{ \underline{- 1}}}} \\  \\ x - y = 6 \\ x - ( - 1) = 6 \\ x + 1 = 6 \\ x = 6 - 1 \\  \boxed{ \boxed{x =  \underline{ \underline{5}}}}

Step-by-step explanation:

x = 5

y = -1

Similar questions