solve x and y: bx + ay -2ab=0, ax -by -A square + b square =0
Answers
Answered by
9
GIVEN
bx + ay - 2ab = 0 ........... (1)
ax - by - a^2 + b^2 = 0 .... (2)
MULTIPLY
Equation (1) by 'a' & (2) by 'b'
ACHIEVE
CASE 1.
(bx + ay - 2ab = 0) a
abx + a^2y - 2a^2b = 0
CASE 2.
( ax - by - a^2 + b^2 = 0) b
abx - b^2y - a^2b + b^3 = 0
abx - b^2y - b (a^2 - b^2) = 0
SUBTRACT (CASE 2) from (CASE 1)
[abx + a^2y - 2a^2b = 0] - [abx - b^2y - b (a^2 - b^2) = 0]
= (abx - abx) + (a^2y + b^2y) - [2a^2b - b(a^2 - b^2)] = 0
y (a^2 + b^2) - b(2a^2 - a^2 + b^2) = 0
y (a^2 + b^2) - b(a^2 + b^2) = 0
y (a^2 + b^2) = b(a^2 + b^2)
y = [b(a^2 + b^2)] / (a^2 + b^2)
y = b ........................ (3)
SUBSITUTE (3) in (1)
bx + a x b - 2ab = 0
bx - ab = 0
bx = ab
x = ab / b
x = a ......... (4)
Therefore, the values from (3) & (4) are
y = b & x = a
bx + ay - 2ab = 0 ........... (1)
ax - by - a^2 + b^2 = 0 .... (2)
MULTIPLY
Equation (1) by 'a' & (2) by 'b'
ACHIEVE
CASE 1.
(bx + ay - 2ab = 0) a
abx + a^2y - 2a^2b = 0
CASE 2.
( ax - by - a^2 + b^2 = 0) b
abx - b^2y - a^2b + b^3 = 0
abx - b^2y - b (a^2 - b^2) = 0
SUBTRACT (CASE 2) from (CASE 1)
[abx + a^2y - 2a^2b = 0] - [abx - b^2y - b (a^2 - b^2) = 0]
= (abx - abx) + (a^2y + b^2y) - [2a^2b - b(a^2 - b^2)] = 0
y (a^2 + b^2) - b(2a^2 - a^2 + b^2) = 0
y (a^2 + b^2) - b(a^2 + b^2) = 0
y (a^2 + b^2) = b(a^2 + b^2)
y = [b(a^2 + b^2)] / (a^2 + b^2)
y = b ........................ (3)
SUBSITUTE (3) in (1)
bx + a x b - 2ab = 0
bx - ab = 0
bx = ab
x = ab / b
x = a ......... (4)
Therefore, the values from (3) & (4) are
y = b & x = a
Answered by
3
GIVEN
bx + ay - 2ab = 0 ........... (1)
ax - by - a^2 + b^2 = 0 .... (2)
MULTIPLY
Equation (1) by 'a' & (2) by 'b'
ACHIEVE
CASE 1.
(bx + ay - 2ab = 0) a
abx + a^2y - 2a^2b = 0
CASE 2.
( ax - by - a^2 + b^2 = 0) b
abx - b^2y - a^2b + b^3 = 0
abx - b^2y - b (a^2 - b^2) = 0
SUBTRACT (CASE 2) from (CASE 1)
[abx + a^2y - 2a^2b = 0] - [abx - b^2y - b (a^2 - b^2) = 0]
= (abx - abx) + (a^2y + b^2y) - [2a^2b - b(a^2 - b^2)] = 0
y (a^2 + b^2) - b(2a^2 - a^2 + b^2) = 0
y (a^2 + b^2) - b(a^2 + b^2) = 0
y (a^2 + b^2) = b(a^2 + b^2)
y = [b(a^2 + b^2)] / (a^2 + b^2)
y = b ........................ (3)
SUBSITUTE (3) in (1)
bx + a x b - 2ab = 0
bx - ab = 0
bx = ab
x = ab / b
x = a ......... (4)
Therefore, the values from (3) & (4) are
y = b & x = a
Plzz mark as brainliest answer
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
Social Sciences,
8 months ago
Math,
1 year ago
Math,
1 year ago
English,
1 year ago