Math, asked by sk9214947, 1 month ago

Solve x and y
(i) 3x + 7y = 36
6x + 5y = 27
(ii) 11x + 2y =125
2x + lly = 44​

Answers

Answered by guptasnehlata54
0

Answer:

3x + 7y = 36 6x + 5y = 27 (ii) 11x + 2y =125 2x + 1ly = 44. 1. See answer. Add answer+5 pts.

Answered by deepakkumar9254
4

Answer:-

i.) y = 5 and x = 0.3

ii.) y = 2 and x = 11

Solution:-

i.) 3x + 7y = 36, 6x + 5y = 27

Case - I :-

3x + 7y = 36

3x = 36 - 7y

 \tt{x =  \dfrac{36 - 7y}{3}  \:  \:  \: ....eq.i.)}

Case - II :-

6x + 5y = 27

6x = 27 - 5y

Substituting the value of x from eq. i.)

 =  >  \tt{6( \dfrac{36 - 7y}{3} ) = 27 - 5y} \\  \\   =  > \tt{ \dfrac{216 - 42y}{3} = 27 - 5y} \\  \\  =  >  \tt{216 - 42y = 3(27 - 5y) }\\  \\  =  > \tt {216 - 42y = 81 - 15y} \\  \\  =  >   \tt{- 42y + 15y = 81 - 216} \\  \\  =  >\tt{  - 27 y=  - 135} \\  \\  =  >\tt{ y =  \dfrac{ - 135}{ - 27} } \\  \\  =  >  \tt{y = 5}

Value of y is 5.

Substituting the value of y in eq.i.)

 =  >  \tt{x =  \dfrac{36 - 7y}{3} }  \\  \\   =  > \tt{x =  \dfrac{36 - 7 \times 5}{3} }   \\  \\   =  > \tt{x =  \dfrac{36 - 35}{3} }  \\  \\  =  >  \tt{x =  \dfrac{1}{3} } \\  \\   =  > \tt{x = 0.3}

ii.) 11x + 2y = 125, 2x + 11y = 44

Case - I :-

11x + 2y = 125

11x = 125 - 2y

 \tt{x =  \dfrac{125 - 2y}{11}  \:  \:  \: ....eq.i.)}

Case - II :-

2x + 11y = 44

Substituting the value of x from eq.i.)

 =  >  \tt{2 (\dfrac{125 - 2y}{11})+11y = 44} \\  \\  =  > \tt{\dfrac{250 - 4y}{11}+11y = 44} \\  \\ =  >  \tt{\dfrac{250 - 4y + (11y \times 11)}{11}= 44}  \\  \\  =  > \tt{\dfrac{250 - 4y + 121y}{11}= 44}  \\  \\  =  > \tt{\dfrac{250  + 117y}{11}= 44}  \\  \\  =  > \tt{250  + 117y= 44 \times 11}  \\  \\  =  > \tt{250  + 117y= 484}  \\  \\  =  > \tt{117y= 484 - 250}  \\  \\ =  >  \tt{117y= 234}  \\  \\  =  > \tt{y= \dfrac{234}{117}}  \\  \\  =  >  \tt{y = 2}

The value of y is 2.

Substituting the value of y in eq.i.)

 =  >  \tt{x =  \dfrac{125 - 2y}{11}} \\  \\  =  >  \tt{x =  \dfrac{125 - 2 \times 2}{11}} \\  \\ =  >  \tt{x =  \dfrac{125 - 4}{11}}\\  \\ =  >  \tt{x =  \dfrac{121}{11}}\\  \\ =  >  \tt{x = 11}

Similar questions