Solve : x.cosy. dx = y.cosx. dy
Answers
Answered by
0
Answer:
xcos
x
y
+ysin
x
y
]y=x[ysin
x
y
−xcos
x
y
]×
dx
dy
Given differential eqn can be written as
dx
dy
=
x[ysin
x
y
−x cos
x
y
]
y[xcos
x
y
+ysin
x
y
]
....(1)
Substitute y=vx
dx
dy
=v+x
dx
dv
So eqn (1) becomes
v+x
dx
dv
=
[vsinv−cosv]
v[cosv+vsinv]
x
dx
dv
=
vsinv−cosv
2vcosv
vcosv
vsinv−cosv
dv=
x
2
dx
Integrating both sides,
∫tanvdv−∫
v
1
dv=2∫
x
1
dx
−logcosv−logv=2logx+logC
⇒
vcosv
1
=Cx
2
⇒xycos(
x
y
)=
C
1
⇒xycos(
x
y
)=c
Similar questions