Math, asked by saishtakhan001, 4 months ago

solve x from the following expression : x+2/3-x-3/4=x+1/5-1​

Answers

Answered by stuprajin6202
0

Answer:

Using Power Rules and Simple maths

4x−3x−12=3x+12−22x−1

22x+22x−1=3x+12+3x−12

22x+22x2=3x3–√+3x3√

22x(1+12)=3x(3–√+13√)

22x(32)=3x(43√)

22x(33–√)=3x(8)

22x332=3x23

Comparing Power of 2 2x=3, Comparing Power of 3 x=32

Both Equations give us

x=32

Answered by Flaunt
23

\sf \longmapsto  \dfrac{x + 2}{3}  -  \dfrac{x - 3}{4}  =  \dfrac{x + 1}{5 - 1}

\sf \longmapsto \dfrac{x + 2}{3}  -  \dfrac{x - 3}{4}  =  \dfrac{x + 1}{4}

Now ,taking LCM of 3 & 4

LCM of 3 & 4 is 12

\sf \longmapsto \dfrac{4(x + 2) - 3(x - 3)}{12}  =  \dfrac{x + 1}{4}

\sf \longmapsto  \dfrac{4x + 8 - 3x + 9}{12}  =  \dfrac{x + 1}{4}

\sf \longmapsto \dfrac{x + 17}{12}  =  \dfrac{x + 1}{4}

Now,cross multiply to both sides:

\sf \longmapsto4(x + 17) = 12(x + 1)

\sf \longmapsto4x + 68 = 12x + 12

\sf \longmapsto68 - 12 = 12x - 4x

\sf \longmapsto56 = 8x

\sf \longmapsto \: x =  \dfrac{56}{8}  = 7

\sf\boxed{ \bold{x = 7}}

Check:

\sf \longmapsto4(x + 17) = 12(x + 1)

Taking LHS

\sf \longmapsto4(7 + 17)

\sf \longmapsto4(24) = 96

Now taking RHS

\sf \longmapsto12(x + 1)

\sf \longmapsto12(7 + 1)

\sf \longmapsto12(8)

\sf  = 96

Hence,LHS = RHS (Verified)

Similar questions