Math, asked by rujal8781, 10 months ago

Solve x (x-1)dy/dx-(x-2)y=x3(2x-1)

Answers

Answered by Anonymous
1

The differential equation  x (x-1)dy/dx-(x-2)y = x³(2x-1) can be solved in the following ways:

  • As per the question,

x (x-1)dy/dx - (x-2)y = x³(2x-1)

  • Dividing both sides by x(x-1), we get,

dy / dx - (x-2) / x(x-1) = x²(2x-1) / (x-1)

  • Let,  a = e^{\int\limits {P} \, dx }  , where P = -(x-2) / x(x-1)
  • Now, Solving {\int\limits {P} \, dx } :

= - ∫ [(x-1) + (-1)] / x(x-11)

= ∫ - 1/ x  + ∫ 1 / (x² - x)

= - ln x + ln (x-1) / x

= ln (x-1)/x²

  • Therefore we get   =    e^{ ln (x-1) / x^{2} }

                                        =  (x-1)/x²

  • Now, y * a = x²(2x-1) / (x-1) * a

         y * (x-1)/x²  =  ∫ x²(2x-1) / (x-1)  * (x-1)/x²

                           = x² - x + C

  • Therefore, y = x² / (x-1) * ( x² - x + C )
Similar questions