Math, asked by priyagrwl27, 3 months ago

solve: x/x-1 + x-1/x = 2½​

Answers

Answered by Flaunt
14

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{x}{x - 1}  +  \dfrac{x - 1}{x}  =  \dfrac{5}{2}

Taking LCM of x-1 and x

\sf \longmapsto \dfrac{ {x}^{2} +  {(x - 1)}^{2}  }{x(x - 1)}  =  \dfrac{5}{2}

Identity used here

(a-b)²=a²+b²-2ab

\sf \longmapsto \dfrac{ {x}^{2}  +  {x}^{2} + 1 - 2x }{ {x}^{2}  - x}  =  \dfrac{5}{2}

\sf \longmapsto \dfrac{2 {x}^{2} - 2x + 1 }{ {x}^{2}  - x}  =  \dfrac{5}{2}

Cross multiply to both sides

\sf \longmapsto2(2 {x}^{2}  - 2x + 1) = 5( {x}^{2}  - x)

\sf \longmapsto4 {x}^{2}  - 4x + 2 = 5 {x}^{2}  - 5x

Making like terms together:

\sf \longmapsto5 {x}^{2}  - 4 {x}^{2}  - 5x + 4x - 2 = 0

\sf \longmapsto {x}^{2}  - x - 2 = 0

Now, factorise it

\sf \longmapsto {x}^{2}  - 2x + x - 2 = 0

\sf \longmapsto \: x(x - 2) + 1(x - 2) = 0

\sf \longmapsto(x + 1)(x - 2) = 0

\sf \bold{x =  - 1 \:,\:x = 2}

Check:

At x= -1

\sf \longmapsto \dfrac{ - 1}{ - 1 - 1} ( + ) \dfrac{ - 1 - 1}{ - 1}

\sf \longmapsto \dfrac{1}{2}  + 2

\sf \longmapsto \dfrac{5}{2}

Now ,at x=2

\sf \longmapsto \dfrac{2}{2 - 1}  +  \dfrac{2 - 1}{2}

\sf \longmapsto2 +  \dfrac{1}{2}

\sf \longmapsto \dfrac{5}{2}

Hence, Equation is satisfied at both values of x .

Similar questions