Math, asked by M00nGirl001, 4 months ago

solve x
x+3/x+2 = 3x-7/2x-3

x is not equal to -2 and 3/2

guys it's urgent​

Answers

Answered by Anonymous
14

GIVEN :–

\begin{gathered} \\\implies \bf \dfrac{x+3}{x+2}= \dfrac{3x-7}{2x-3}\\ \end{gathered}

• And –

\begin{gathered} \\\implies \bf x \neq - 2 \: \: and \: \:3/2\\ \end{gathered}

TO FIND :–

• Value of 'x' = ?

SOLUTION :–

\begin{gathered} \\\implies \bf \dfrac{x+3}{x+2}= \dfrac{3x-7}{2x-3}\\ \end{gathered}

\begin{gathered} \\\implies \bf (x + 3)(2x - 3) = (3x - 7)(x + 2)\\ \end{gathered}

\begin{gathered} \\\implies \bf 2 {x}^{2} - 3x + 6x - 9=3 {x}^{2} + 6x - 7x - 14\\ \end{gathered}

\begin{gathered} \\\implies \bf 2 {x}^{2} + 3x- 9=3 {x}^{2} - x- 14\\ \end{gathered}

\begin{gathered} \\\implies \bf 2 {x}^{2} + 3x- 9 - 3 {x}^{2} + x + 14 = 0\\ \end{gathered}

\begin{gathered} \\\implies \bf - {x}^{2} + 4x + 5= 0\\ \end{gathered}

\begin{gathered} \\\implies \bf {x}^{2} - 4x - 5= 0\\ \end{gathered}

\begin{gathered} \\\implies \bf {x}^{2} - 5x + x - 5= 0\\ \end{gathered}

\begin{gathered} \\\implies \bf x(x - 5) + 1(x - 5)= 0\\ \end{gathered}

\begin{gathered} \\\implies \bf (x + 1)(x - 5)= 0\\ \end{gathered}

\begin{gathered} \\\implies \large{ \boxed{ \bf x = 5, - 1}}\\ \end{gathered}

___________________________________.

♥️.

Answered by MissLuxuRiant
11

GIVEN :–

\begin{gathered}\begin{gathered} \\\implies \bf \dfrac{x+3}{x+2}= \dfrac{3x-7}{2x-3}\\ \end{gathered} \end{gathered}

• And –

\begin{gathered}\begin{gathered} \\\implies \bf x \neq - 2 \: \: and \: \:3/2\\ \end{gathered}\end{gathered}

TO FIND :–

• Value of 'x' = ?

SOLUTION :–

\begin{gathered}\begin{gathered} \\\implies \bf \dfrac{x+3}{x+2}= \dfrac{3x-7}{2x-3}\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf (x + 3)(2x - 3) = (3x - 7)(x + 2)\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf 2 {x}^{2} - 3x + 6x - 9=3 {x}^{2} + 6x - 7x - 14\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf 2 {x}^{2} + 3x- 9=3 {x}^{2} - x- 14\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf 2 {x}^{2} + 3x- 9 - 3 {x}^{2} + x + 14 = 0\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf - {x}^{2} + 4x + 5= 0\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf {x}^{2} - 4x - 5= 0\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf {x}^{2} - 5x + x - 5= 0\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \bf (x + 1)(x - 5)= 0\\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\implies \large{ \boxed{ \bf x = 5, - 1}}\\ \end{gathered}\end{gathered}

Similar questions