Math, asked by umapandrangi, 2 months ago

solve (x+y+1)dy/dx=1​

Answers

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

 \tt \:  \to \:(x + y + 1)\dfrac{dy}{dx}  = 1

\bf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x + y + 1}  -  -  - (1)

 \tt \:  \to \:Put \: x + y + 1 = t

 \tt \:  \implies \: 1 + \dfrac{dy}{dx} + 0 = \dfrac{dt}{dx}

 \tt \:  \implies \: \dfrac{dy}{dx} = \dfrac{dt}{dx}  - 1

☆ So, (1) can be rewritten as

 \tt \:  \implies \: \dfrac{dt}{dx} - 1 = \dfrac{1}{t}

 \tt \:  \implies \: \dfrac{dt}{dx} \:  = \dfrac{t + 1}{t}

 \tt \:  \implies \: \dfrac{t}{t + 1} dt \:  = dx

☆ On integrating, both sides we get

 \tt \:  \to \: \int \: \dfrac{t}{t + 1} dt =  \int \: dx

 \tt \:  \to \: \int \: \dfrac{t + 1 - 1}{t + 1}dt = x + c

 \tt \:  \to \: \:  \int \: (1  - \dfrac{1}{t + 1} ) = x + c

 \tt \:  \to \: t -  log(t + 1)  = x + c

 \tt \:  \to \:x + y + 1 -  log(x + y  + 1+ 1)  = x + c

 \tt \:  \to \:y + 1 -  log(x + y + 2)  = c

Similar questions