Math, asked by aanal02, 1 year ago

solve x+y-(a+b)=0 and ax-by-(a2 - b2)=0 by cross multiplication ​

Answers

Answered by JackelineCasarez
2

x = a, y = b

Step-by-step explanation:

Given that,

x + y - (a+b) = 0

ax - by - (a^2 - b^2) = 0

Using cross-multiplication, we get:

\frac{x}{- (a^2 - b^2) - (-b) * -(a + b) } = \frac{-y}{- (a^2 - b^2) - a * -(a + b) }} = \frac{1}{1 * -b -a * 1}

\frac{x}{- a^2 + b^2 - ab - b^2 } = \frac{-y}{- a^2 + b^2 + a^2 + ab } = \frac{1}{-b-a}

\frac{x}{-a(a + b)} = \frac{-y}{b(a + b)} = \frac{1}{- (a + b)}

\frac{x}{-a(a + b)} = \frac{y}{-b(a + b)} = \frac{1}{- (a + b)}

⇒ x = \frac{-a(a + b)}{-(a + b)} = a & y = \frac{-b(a + b)}{-(a + b)} = b

∵ x = a & y = b

Learn more: Find the value of x

brainly.in/question/15941185

Similar questions