Solve (x - y) (x + y) + (y - z) (y + z) + (z -x) (z + x)
(y + z)
zero
(x - y)
(z - x)
Answers
Answer :
›»› The required answer is 0 (zero).
Given :
- (x - y) (x + y) + (y - z) (y + z) + (z - x) (z + x).
To Solve :
- Expand the expression.
Solution :
→ (x - y) (x + y) + (y - z) (y + z) + (z - x) (z + x)
Organize the expression with the distributive,
→ x² - y² + (y - z) (y + z) + (z - x) (z + x)
Organize the expression with the distributive law,
→ x² - y² + y² - z² + (z - x) (z + x)
Sort the polynomial expression in descending order,
→ x² - y² + y² - z² + (-x + z) (z + x)
Sort the polynomial expression in descending order,
→ x² - y² + y² - z² (-x + z) (x + z)
Organize the expression with the distributive,
→ x² - y² + y² - z² - x² + z²
Organize the similar term,
→ (1 - 1)x² + (-1 + 1)y² + (-1 + 1)z²
Arrange the constant term,
→ 0x² + (-1 + 1)y² + (-1 + 1)z²
If we multiply a number by 0, it becomes 0,
→ 0 + (-1 + 1)y² + (-1 + 1)z²
Arrange the constant term,
→ 0 + 0y² + (-1 + 1)z²
If we multiply a number by 0, it becomes 0,
→ 0 + 0 + (-1 + 1)z²
Arrange the constant term,
→ 0 + 0 + 0z²
If we multiply a number by 0, it becomes 0,
→ 0 + 0 + 0
Add 0 and 0,
→ 0 + 0
Again add 0 and 0,
→ 0
Hence, the required answer is 0 (zero).
So, option (b) zero is correct ✔.
Answer:
zero
Step-by-step explanation:
x2 - y2 + y2 - z2 + z2- x2
0 ( all gets cancelllled)
=