solve x+y/xy=6,x-y/xy=2 pair of equation reducing them to a pair of linear equations
Answers
Answered by
3
Answer :-
Required solution is x = 1 / 2 and y = 1 / 4.
Explanation :-
Given pair of equations :-
→ (x + y) / xy = 6
→ (x - y) / xy = 2
(x + y) / xy = 6
⇒ ( x / xy ) + ( y / xy ) = 6
⇒ ( 1 / y ) + ( 1 / x ) = 6
(x - y) / xy = 2
⇒ ( x / xy ) - ( y / xy ) = 2
⇒ ( 1 / y ) - ( 1 / x ) = 2
On simplifying we get,
→ ( 1 / y ) + ( 1 / x ) = 6
→ ( 1 / y ) - ( 1 / x ) = 2
Sustituting a = 1 / y and b = 1 / x we get,
→ a + b = 6 --- eq(1)
→ a - b = 2 --- eq(2)
Adding eq(1) and eq(2)
⇒ a + b + ( a - b ) = 6 + 2
⇒ a + b + a - b = 8
⇒ 2a = 8
⇒ a = 8 / 2
⇒ a = 4
But, a = 1 / y
⇒ 4 = 1 / y
⇒ y = 1 / 4
Substuting a = 4 in eq(1)
⇒ a + b = 6
⇒ 4 + b = 6
⇒ b = 6 - 4
⇒ b = 2
But, b = 1 / x
⇒ 2 = 1 / x
⇒ x = 1 / 2
Hence, the required solution is x = 1 / 2 and y = 1 / 4.
Similar questions