Math, asked by umashankarsharm56531, 1 year ago

Solve x+y+z=7,x+2y+3z=16,x+3y+4z=22 answer

Answers

Answered by rashich1219
4

Given:

Solve x+y+z=7,x+2y+3z=16,x+3y+4z=22.

To Solve:

solve for x?

Solution:

it is given that-

x+y+z=7,x+2y+3z=16,x+3y+4z=22

then , the augmented matrix is

\[\left[ {\begin{array}{*{20}{c}}  1&1&1\vline & 7 \\   1&2&3\vline & {16} \\   1&3&4\vline & {22} \end{array} } \right]\]

On solving , we get

\left[ {\begin{array}{*{20}{c}}  1&1&1\vline & 7 \\   0&1&2\vline & 9 \\   0&2&3\vline & {15} \end{array} } \right]{R_2} \to {R_2} - {R_1},{R_3} \to {R_3} - {R_1} \hfill \\

\left[ {\begin{array}{*{20}{c}}  1&1&1\vline & 7 \\   0&1&2\vline & 9 \\   0&0&1\vline & 3 \end{array} } \right]{R_3} \to 2{R_2} - {R_3} \hfill \\

\left[ {\begin{array}{*{20}{c}}  1&1&0\vline & 4 \\   0&1&0\vline & 3 \\   0&0&1\vline & 3 \end{array} } \right]{R_1} \to {R_1} - {R_3},{R_2} \to {R_2} - 2{R_3} \hfill \\

\left[ {\begin{array}{*{20}{c}}  1&0&0\vline & 1 \\   0&1&0\vline & 3 \\   0&0&1\vline & 3 \end{array} } \right]{R_1} \to {R_1} - {R_2} \hfill \\

Hence, on solving above matrix , we get

x=1,y=3,z=3.

Answered by mrunaldhulap01
0

Answer:

Solve x+y+z=7,x+2y+3z=16,x+3y+4z=22 answer

Similar questions