Math, asked by amartyakunta34, 3 months ago

solve x²-(1+√2)x+√2=0 by quadratic formula​


prince5132: Thanks queen :)

Answers

Answered by prince5132
15

GIVEN :-

  • x² - (1 + √2)x + √2 = 0

TO FIND :-

  • Solutions of the given quadratic equation.

SOLUTION :-

As we know that,

\bigstar  \: \boxed{  \displaystyle\sf \: x =  \frac{ - b  +  \sqrt{b ^{2}  - 4ac} }{2a} \:  , \: x =  \frac{ - b -  \sqrt{b ^{2} - 4ac } }{2a} } \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} ) +  \sqrt{(1 +  \sqrt{2} ) ^{2}  - 4 \times 1 \times  \sqrt{2} } }{2 \times 1}  \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} ) +  \sqrt{1 ^{2}  +( \sqrt{2} ) ^{2}  + 2 \times  \sqrt{2}   - 4 \sqrt{2} } }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} ) +  \sqrt{1 + 2 +  \sqrt{2}  - 4 \sqrt{2} } }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} ) +  \sqrt{3  - 2 \sqrt{2} } }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - 1 -  \sqrt{2}  +  \sqrt{0.18} }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - 1 -  \sqrt{2}  + 0.42}{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - 1 - 1.41 + 0.42}{2}  \\

\implies \displaystyle \sf \: x =   \frac{1.99}{2}  \\

\implies \underline{ \boxed{ \displaystyle \sf \: x  \approx1}}

Similarly,

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} )  -   \sqrt{(1 +  \sqrt{2} ) ^{2}  - 4 \times 1 \times  \sqrt{2} } }{2 \times 1}  \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} ) -  \sqrt{1 ^{2}  +( \sqrt{2} ) ^{2}  + 2 \times  \sqrt{2}   - 4 \sqrt{2} } }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} )  -  \sqrt{1 + 2 +  \sqrt{2}  - 4 \sqrt{2} } }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - (1 +  \sqrt{2} )  -   \sqrt{3  - 2 \sqrt{2} } }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - 1 -  \sqrt{2}   -  \sqrt{0.18} }{2}  \\

\implies \displaystyle \sf \: x =   \frac{ - 1 -  1.41   -   0.42 }{2}  \\

\implies \displaystyle \sf \: x =   \frac{2.83}{2}  \\

\implies \displaystyle \sf \: x =  1.41 \\

\implies  \underline{ \boxed{\displaystyle \sf \: x  \approx \sqrt{2} }}


Anonymous: Best solution as always! ❤
anindyaadhikari13: x = √2 and x = 1 is the correct solution.
anindyaadhikari13: You can't write like that x approximately equals to √2, 1
prince5132: Why
anindyaadhikari13: x² - (1 + √2)x + √2 = 0
➡ x² - x - √2x + √2 = 0
➡ x(x - 1) - √2(x - 1) = 0
➡ (x - √2)(x - 1) = 0
➡ Either x - √2 = 0 or x - 1 = 0
➡ x = 1,√2
anindyaadhikari13: See this.
anindyaadhikari13: Mathematically, its incorrect to write "approximately equals to"
Anonymous: umm....@anindyaadhikari i guess the solution which prince has written thats too right ☺
prince5132: yeah if we will take the round off of the given solution of x we will get perfect solutions.
Anonymous: Absolutely right! ☺
Similar questions