Solve (x² + 3x + 1)(x² + 3x - 3) ≥ 5
Please solve it!!
Answers
Answered by
116
(x² + 3x +1)(x² +3x -3) ≥ 5
let x² + 3x = P
(P +1)( P -3) ≥ 5
P² -2P -3 ≥ 5
P² -2P -3 -5 ≥ 0
P² -2P -8 ≥ 0
P² - 4P +2P -8 ≥ 0
P( P -4) +2( P -4) ≥ 0
(P +2)( P -4) ≥ 0
P≥ 4 and P≤ -2
now,
x² +3x ≥ 4 and x² +3x ≤ -2
x² +3x -4 ≥ 0
x² +4x -x -4 ≥0
(x +4)(x -1) ≥0
x ≥ 1 and x ≤ -4
again,
x² +3x ≤ -2
x² +3x +2 ≤ 0
(x +1)(x +2) ≤ 0
-2 ≤ x ≤ -1
hence , solutions is
x € [ -2, -1 ] U [ 1, ∞ ) U ( -∞ , 4 ]
let x² + 3x = P
(P +1)( P -3) ≥ 5
P² -2P -3 ≥ 5
P² -2P -3 -5 ≥ 0
P² -2P -8 ≥ 0
P² - 4P +2P -8 ≥ 0
P( P -4) +2( P -4) ≥ 0
(P +2)( P -4) ≥ 0
P≥ 4 and P≤ -2
now,
x² +3x ≥ 4 and x² +3x ≤ -2
x² +3x -4 ≥ 0
x² +4x -x -4 ≥0
(x +4)(x -1) ≥0
x ≥ 1 and x ≤ -4
again,
x² +3x ≤ -2
x² +3x +2 ≤ 0
(x +1)(x +2) ≤ 0
-2 ≤ x ≤ -1
hence , solutions is
x € [ -2, -1 ] U [ 1, ∞ ) U ( -∞ , 4 ]
abhi178:
Here we use inequality concept
Answered by
36
I kind of learnt this inequality concept so I want to try this out.
(x² + 3x +1)(x² +3x -3) ≥ 5
Here x² + 3x is common so
Let x² + 3x = Y
(Y +1)( y -3) ≥ 5
Y² -3Y+Y -3 ≥ 5
Y² - 2Y - 3 ≥ 5
Y² -2Y -3 -5 ≥ 0
Y² -2Y -8 ≥ 0
Y² - 4Y +2Y -8 ≥ 0
Y( Y -4) +2( Y -4) ≥ 0
(Y +2)( Y - 4) ≥ 0
So,
Y ≥ 4 and Y ≤ -2
x² +3x ≥ 4 and x² +3x ≤ -2
x² +3x -4 ≥ 0
x² +4x -x -4 ≥0
(x +4)(x -1) ≥0
x ≥ 1 and x ≤ -4
Now,
x² +3x ≤ -2
x² +3x +2 ≤ 0
(x +1)(x +2) ≤ 0
-2 ≤ x ≤ -1
Required solution ---
x € [ -2, -1 ] U [ 1, ∞ ) U ( -∞ , 4 ]
Hope This Helps You
(x² + 3x +1)(x² +3x -3) ≥ 5
Here x² + 3x is common so
Let x² + 3x = Y
(Y +1)( y -3) ≥ 5
Y² -3Y+Y -3 ≥ 5
Y² - 2Y - 3 ≥ 5
Y² -2Y -3 -5 ≥ 0
Y² -2Y -8 ≥ 0
Y² - 4Y +2Y -8 ≥ 0
Y( Y -4) +2( Y -4) ≥ 0
(Y +2)( Y - 4) ≥ 0
So,
Y ≥ 4 and Y ≤ -2
x² +3x ≥ 4 and x² +3x ≤ -2
x² +3x -4 ≥ 0
x² +4x -x -4 ≥0
(x +4)(x -1) ≥0
x ≥ 1 and x ≤ -4
Now,
x² +3x ≤ -2
x² +3x +2 ≤ 0
(x +1)(x +2) ≤ 0
-2 ≤ x ≤ -1
Required solution ---
x € [ -2, -1 ] U [ 1, ∞ ) U ( -∞ , 4 ]
Hope This Helps You
Similar questions
Physics,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Hindi,
1 year ago
English,
1 year ago