solve x² -4 / x² - 2x - 15 <_0
if any someone answered correctly I add to brain list
Answers
Answer:
Solving equation √(x² - 9 x + 18) + √(x² + 2 x - 15) = √(x² - 4 x + 3) following roots are obtained
Solution:
√(x² - 9 x + 18) + √(x² + 2 x - 15) = √(x² - 4 x + 3)
For removing the square root on left side first we have to take square on both sides
[√(x² - 9 x + 18) + √(x² + 2 x - 15)]² = [√(x² - 4 x + 3)]²
[√(x²-9x+18)]²+[√(x²+2x-15)]²+2√(x²-9x+18)(x²+2x-15)= (x²-4x+3)
x²-9x+18+x²+2x-15 + 2 √(x²-9x+18)(x²+2x-15) = (x²-4x+3)
2 x²-7 x + 3 + 2√(x²-9x+18)(x²+2x-15) = x²-4x+3
2√(x²-9x+18)(x²+2x-15) = x² - 4 x + 3 - 2 x² + 7 x - 3
2√(x²-9x+18)(x²+2x-15) = - x² + 3 x
now we are going to take squares on both sides
[2√(x²-9x+18)(x²+2x-15)]² = [- x² + 3 x]²
4(x²-9x+18)(x²+2x-15) = x⁴ + 2 (-x²)(3 x) + (3 x)²
4[x⁴+2x³-15x²-9x³-18x²+135x+18x²+36x-270] = x⁴ - 6 x³ + 9x²
4 [x⁴ - 7x³ -15 x² + 171 x - 270] = x⁴ - 6 x³ + 9x²
4x⁴ - 28 x³ -60 x² + 684 x - 1080 = x⁴ - 6 x³ + 9x²
4x⁴ - x⁴ - 28 x³ + 6 x³ - 60 x² - 9x²+ 684 x - 1080 = 0
3 x⁴ - 22 x³ - 69 x² + 684 x - 1080 = 0
Step-by-step explanation:
solve it like this and mark me as brainliest