Math, asked by deepakhulda, 1 year ago

solve : x2 - 6x + [x] + 7 = 0

Answers

Answered by knjroopa
4

Step-by-step explanation:

  • Given Solve : x2 - 6x + [x] + 7 = 0
  • Now we can write this as  x^2 – 5x – x + [x] + 7 = 0
  •                    Now x^2 – 5x + 7 = x – [x]
  •                    So x^2 – 5x + 7 = {x} (so rational part of x)
  •                      Now there are two curves, so  
  •              F(x) = x^2 – 5x + 7  and   g(x) = {x}
  • Now we have an upward parabola and the vertex                               will be v(-b/2a, -d / 4a)
  •                    Here a = 1 and b = 5, d = 25 – 28 = -3
  •                           So vertex will be (5/2 , ¾)
  • So the parabola is in the form of a cup.
  •                          Now x^2 – 5x + 7 = 1
  •                              Or x^2 – 5x + 6 = 0
  •                              So x^2 – 3x – 2x + 6 = 0
  •                            Or x(x – 3) – 2 (x – 3) = 0
  •                            Or (x – 3) (x – 2) = 0
  •                           Or x = 3,2
  •             After plotting the graph with the given values, we find there is                     NO SOLUTION.
  •          Therefore f(x) cannot be equal to g(x) for x belongs to R.

Reference link will be

https://brainly.in/question/17285000

Similar questions