Solve x²+ 8x- 6=0 using the Quadratic Formula.
Answers
Answer:
The first term is, x2 its coefficient is 1 .
The middle term is, -8x its coefficient is -8 .
The last term, "the constant", is +6
Step-1 : Multiply the coefficient of the first term by the constant 1 • 6 = 6
Step-2 : Find two factors of 6 whose sum equals the coefficient of the middle term, which is -8 .
-6 + -1 = -7
-3 + -2 = -5
-2 + -3 = -5
-1 + -6 = -7
1 + 6 = 7
2 + 3 = 5
3 + 2 = 5
6 + 1 = 7
Observation : No two such factors can be found !!
⛥Required AnswèR :
⛥Explanation:
The quadratic equation is used to find the roots of a quadratic. The formula is:
when
We are given the quadratic:
If we compare the given quadratic to the standard form of a quadratic, then:
•Substitute the values into the formula.
✰Solve inside the radical first.
→Solve the exponent.
8²= 8×8= 64
⛥Multiply 4, 1, and -6.
4(1)(-6)= 4(-6)= -24
✰Add 64 and 24 (2 negative signs become a positive)
64- 24 64+24=88
⛥Solve the denominator.
✰The radical can be simplified. 88 is divisible by a perfect square: 4
⛥Take the square root of 4.
✰Divide by 2.
The roots are: x=0.690416 and x=−8.69042
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬