Math, asked by gayathridevimj, 2 months ago

solve (x²+y²)dx - (xy -x²) dy =0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

The given Differential equation is

\rm :\longmapsto\:( {x}^{2} +  {y}^{2})dx - (xy -  {x}^{2})dy = 0

can be rewritten as .

\rm :\longmapsto\:( {x}^{2} +  {y}^{2})dx  = (xy -  {x}^{2})dy

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{ {x}^{2} + {y}^{2} }{ xy -  {x}^{2} }

Since, degree of numerator and denominator both are 2.

So, its a homogeneous differential equation of order 0.

So, to evaluate this Differential equation,

 \purple{\bf :\longmapsto\:Put \: y \:  =  \: vx} -  -  - (1)

So, given differential equation reduces to

\rm :\longmapsto\:\dfrac{d}{dx}vx= \dfrac{ {x}^{2}  +  {(vx)}^{2} }{x(vx) -  {x}^{2} }

\rm :\longmapsto\:v\dfrac{d}{dx}x + x\dfrac{d}{dx}v =\dfrac{ {x}^{2} +  {v}^{2}   {x}^{2} }{ {vx}^{2}  -  {x}^{2} }

\rm :\longmapsto\:v + x\dfrac{dv}{dx} = \dfrac{ {x}^{2}(1 +  {v}^{2} )}{ {x}^{2}(v - 1)}

\rm :\longmapsto\:v + x\dfrac{dv}{dx} = \dfrac{ 1 +  {v}^{2} }{v - 1}

\rm :\longmapsto\: x\dfrac{dv}{dx} = \dfrac{ 1 +  {v}^{2} }{v - 1}  - v

\rm :\longmapsto\: x\dfrac{dv}{dx} = \dfrac{ 1 +  {v}^{2}  -  {v}^{2} + v }{v - 1}

\rm :\longmapsto\: x\dfrac{dv}{dx} = \dfrac{ 1 + v }{v - 1}

On separate the variables, we get

\rm :\longmapsto\: \dfrac{dx}{x} = \dfrac{ v  - 1}{v + 1}dv

On integrating, both sides,

\rm :\longmapsto\:\displaystyle\int\tt  \dfrac{dx}{x} = \displaystyle\int\tt \dfrac{ v  - 1}{v + 1}dv

We know,

\boxed{ \sf{ \: \displaystyle\int\tt  \frac{dx}{x}  =  log(x)  + c}}

So, using this

\rm :\longmapsto\:logx = \displaystyle\int\tt \dfrac{ v  + 1 - 1 - 1}{v + 1}dv

\rm :\longmapsto\:logx = \displaystyle\int\tt \dfrac{ v  + 1 - 2}{v + 1}dv

\rm :\longmapsto\:logx =\displaystyle\int\tt 1dv - 2 \displaystyle\int\tt \dfrac{1}{v + 1}dv

\rm :\longmapsto\:logx = v - 2log(v + 1) + c

On substituting the value of v, from equation (1), we get

\rm :\longmapsto\:logx = \dfrac{y}{x}  - 2log \bigg(\dfrac{y}{x}  + 1 \bigg) + c

\rm :\longmapsto\:logx = \dfrac{y}{x}  - 2log \bigg(\dfrac{y + x}{x}\bigg) + c

\rm :\longmapsto\:logx = \dfrac{y}{x}  - 2log (y + x)  +  2logx + c

\rm :\longmapsto\: - logx - \dfrac{y}{x} +  2log (y + x)  =  c

Answered by Anonymous
10

Answer:

✌✨❣ MARK ME BRAILIST ✨❣✌

Step-by-step explanation:

Correct option is

Bx 2

(x 2 −2y 2 )=k

(x 2 −y 2 )dx−xydy=0

⇒ dxdy

= xyx 2 −y 2

which is homogeneous differential eqn.

Put y=vx DXdy

=v+x dxdv

So, the eqn becomes

⇒v+x dxd = v1−v 2

⇒x dxdv= v1−2v 2

⇒ 1−2v 2v

dv= xdx ⇒∫ 1−2v 2v

dv=∫ xdx Put 1−2v 2 =t⇒−4vdv=dt⇒− 41

∫ tdt =logx+log ⇒−− 41

log∣1−2v 2 ∣=logCx⇒ 41

log∣ x 2 −2y 2x 2

∣=logCx⇒∣ x 2 −2y 2x 2

∣=cx 4⇒x 2

(x 2 −2y 2 )= c1

⇒x 2 - 2(x 2 −2y 2 )=k

✌✨❣ KEEP SMILING ❣✨✌

Attachments:
Similar questions