Math, asked by roshni8757, 5 hours ago

solve (xy-2y^(2))dx-(x^(2)-3xy)dy=0

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

(x - 2 {y}^{2}) dx - ( {x}^{2}   - 3 xy)dy = 0 \\

 \implies \frac{dy}{dx}   =  \frac{xy - 2 {y}^{2} }{ {x}^{2} - 3xy } \\

Let \: y = vx \\  \implies \:  \frac{dy}{dx}  = v + x \frac{dv}{dx}

So,

 \implies \: v +  x\frac{dv}{dx}   =  \frac{x.vx - 2 {vx}^{2} }{ {x}^{2} - 3x.vx } \\

 \implies \: v +  x\frac{dv}{dx}   =  \frac{v {x}^{2}  - 2 {v}^{2} {x}^{2} }{ {x}^{2} - 3vx ^{2} } \\

 \implies \: v +  x\frac{dv}{dx}   =  \frac{v  - 2 {v}^{2} }{ 1 - 3v } \\

 \implies \:   x\frac{dv}{dx}   =  \frac{v  - 2 {v}^{2} }{ 1 - 3v }  - v\\

 \implies \:   x\frac{dv}{dx}   =  \frac{v  - 2 {v}^{2} - v + 3 {v}^{2}  }{ 1 - 3v }  \\

 \implies \:   x\frac{dv}{dx}   =  \frac{ {v}^{2}  }{ 1 - 3v }  \\

 \implies \:   \frac{(1 - 3v)}{ {v}^{2} }dv   =  \frac{ dx  }{ x }  \\

 \implies \:    \bigg(\frac{1 }{ {v}^{2} } -  \frac{3}{v}  \bigg)dv   =  \frac{ dx  }{ x }  \\

 \implies \:    \int \bigg(\frac{1 }{ {v}^{2} } -  \frac{3}{v}  \bigg)dv   =   \int\frac{ dx  }{ x }  \\

 \implies \:    -  \frac{1 }{ v } -  3 \ln(v)   =    \ln x +  C \\

 \implies \:    -  \frac{x }{ y } -  3 \ln \bigg( \frac{y}{x} \bigg)   =    \ln x +  C \\

 \implies \:    -  \frac{x }{ y } -  3 \ln(y) + 3 \ln(x)  =    \ln x +  C \\

 \implies \:    -  \frac{x }{ y } -  3 \ln(y) + 2 \ln(x)  =      C \\

Similar questions