Math, asked by jbolligorla, 5 months ago

solve (xy sin xy +cos xy)ydx+(xy sin xy-cos xy)x dy=0​

Answers

Answered by pulakmath007
7

SOLUTION

TO SOLVE

The differential equation

  \displaystyle\sf{(xy \sin xy +  \cos xy)y dx + (xy \sin xy  -  \cos xy)x dy = 0}

EVALUATION

Here the given differential equation is

  \displaystyle\sf{(xy \sin xy +  \cos xy)y dx + (xy \sin xy  -  \cos xy)x dy = 0}

  \displaystyle\sf{ \implies \:  \frac{dy}{dx}  =  -   \frac{y(xy \sin xy +  \cos xy)}{x (xy \sin xy  -  \cos xy)} }

 \sf{Let \:  \: z = xy}

Now Differentiating both sides with respect to x we get

  \displaystyle\sf{ \frac{dz}{dx}   = y + x   \frac{dy}{dx} }

  \displaystyle\sf{  \implies \: \frac{dz}{dx}   = y -   \frac{xy(xy \sin xy +  \cos xy)}{x (xy \sin xy  -  \cos xy)} }

  \displaystyle\sf{  \implies \: \frac{dz}{dx}   = y -   \frac{y(z \sin z +  \cos z)}{ (z \sin z  -  \cos z)} }

  \displaystyle\sf{  \implies \: \frac{dz}{dx}   = y \bigg[1-   \frac{(z \sin z +  \cos z)}{ (z \sin z  -  \cos z)} \bigg] }

  \displaystyle\sf{  \implies \: \frac{dz}{dx}   = y \bigg[ \frac{(z \sin z  -  \cos z - z \sin z  -   \cos z)}{ (z \sin z  -  \cos z)} \bigg] }

  \displaystyle\sf{  \implies \: \frac{dz}{dx}   =  \frac{z}{x}  \bigg[ \frac{ -2  \cos z }{ (z \sin z  -  \cos z)} \bigg] }

  \displaystyle\sf{  \implies \:   - \frac{(z \sin z  -  \cos z)}{  z\cos z } \:  dz =   \frac{2}{x}dx  }

  \displaystyle\sf{  \implies \:   log |z \cos z|   =  2 logx +   logc}

  \displaystyle\sf{  \implies \:   log |z \cos z|   =   log c{x}^{2} }

  \displaystyle\sf{  \implies \:    |z \cos z|   =    c{x}^{2} }

  \displaystyle\sf{  \implies \:    |  \: xy \cos xy \: |   =    c{x}^{2} }

Where C is constant

FINAL ANSWER

Hence the required solution is

  \displaystyle\sf{    |  \: xy \cos xy \: |   =    c{x}^{2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions
Math, 10 months ago