Math, asked by chejerlasri2579, 2 months ago

solve y=2px+ysquare p square

Answers

Answered by pulakmath007
17

SOLUTION

TO SOLVE

 \displaystyle \sf{y = 2px +  {y}^{2} {p}^{2}  }

EVALUATION

Here the given differential equation is

 \displaystyle \sf{y = 2px +  {y}^{2} {p}^{2}  } \:  \:  \:  -  -  -  - (1)

We solve it as below

 \displaystyle \sf{y = 2px +  {y}^{2} {p}^{2}  }

 \displaystyle \sf{ \implies \:  \: x =  \frac{y}{2p}  -  \frac{p {y}^{2} }{2}   }

Differentiating both sides with respect to y we get

 \displaystyle \sf{ \implies \:  \:  \frac{dx}{dy} =  \frac{1}{2p}  -  \frac{y}{ {p}^{2} } \frac{dp}{dy}     - py  - \frac{ {y}^{2} }{2}  \frac{dp}{dy}   }

 \displaystyle \sf{ \implies \:  \:  \frac{1}{p} =  \frac{1}{2p}  -  \frac{y}{ {p}^{2} } \frac{dp}{dy}     - py  - \frac{ {y}^{2} }{2}  \frac{dp}{dy}   }

 \displaystyle \sf{ \implies \:  \:  \frac{1}{p} =  -  \frac{y}{ {p}^{2} } \frac{dp}{dy}     - py  - \frac{ {y}^{2} }{2}  \frac{dp}{dy}   }

 \displaystyle \sf{ \implies \:  \:  \frac{1}{p}  + py=  -  \frac{y}{ 2p } \frac{dp}{dy}   \bigg(\frac{1}{p}  + py \bigg)   }

 \displaystyle \sf{ \implies \:  \:   \bigg(\frac{1}{p}  + py \bigg)    +  \frac{y}{ 2p } \frac{dp}{dy}   \bigg(\frac{1}{p}  + py \bigg) = 0   }

 \displaystyle \sf{ \implies \:  \:   \bigg(\frac{1}{p}  + py \bigg)    \bigg(1 +  \frac{y}{ 2p } \frac{dp}{dy}   \bigg) = 0   }

 \displaystyle \sf{ \bigg(\frac{1}{p}  + py \bigg)  = 0  \:  \: leads \: to \: singular \: solution  }

 \displaystyle \sf{ \:  \bigg(1 +  \frac{y}{ 2p } \frac{dp}{dy}   \bigg) = 0   \:  \: gives }

 \displaystyle \sf{ \implies \:   \frac{dp}{p} =  - 2 \frac{dy}{y}   }

On integration we get

 \displaystyle \sf{ \int \frac{dp}{p} =  - 2 \int \frac{dy}{y}   }

 \displaystyle \sf{ \implies  \log \: p=  - 2  \log y +  \log c}

 \displaystyle \sf{ \implies  \log \: p=    \log  {y}^{ - 2}  +  \log c}

 \displaystyle \sf{ \implies   p=   \frac{c}{ {y}^{2} } }

Putting the value of p in Equation 1 we get

 \displaystyle \sf{y =  \frac{2cx}{ {y}^{2} }  +  {y}^{2}  \frac{ {c}^{2} }{ {y}^{4} } }

 \displaystyle \sf{ \implies \: y =  \frac{2cx}{ {y}^{2} }  +  \frac{ {c}^{2} }{ {y}^{2} } }

 \displaystyle \sf{ \implies \:  {y}^{3} =  2cx +  {c}^{2}  }

FINAL ANSWER

Hence the required solution is

 \boxed{ \:  \:  \displaystyle \sf{  \:  {y}^{3} =  2cx +  {c}^{2}  } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Solve the differential equation :-

(cosx.cosy - cotx) dx - (sinx.siny) dy=0

https://brainly.in/question/23945760

2. Find the complete integral of p-q=0

https://brainly.in/question/23947735

Similar questions