Math, asked by moizzaidi265, 3 months ago

Solve:
y- 6+ √y=0
y - 6 +  \sqrt{y}  = 0 \\

Answers

Answered by anindyaadhikari13
2

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

→ y - 6 + √y = 0

To Find:

  • Value of y.

Therefore,

 \tt \mapsto y - 6 +  \sqrt{y}  = 0

 \tt \mapsto y +  \sqrt{y} - 6  = 0

By splitting the middle term, we get,

 \tt \mapsto y +  3\sqrt{y} - 2 \sqrt{y}  - 6  = 0

 \tt \mapsto  \sqrt{y}( \sqrt{y} +  3) - 2 (\sqrt{y} + 3)  = 0

 \tt \mapsto  ( \sqrt{y}- 2) (\sqrt{y} + 3)  = 0

Therefore, either (√y - 2) = 0 or (√y + 3) = 0

 \tt \mapsto  ( \sqrt{y}- 2) = 0

 \tt \mapsto  \sqrt{y}=2

 \tt \mapsto y= {2}^{2}

 \tt \mapsto y= 4

We omit √y = -3 because it doesn't satisfy the equation.

Therefore,

 \tt \mapsto y= 4 \: (Answer)

\texttt{\textsf{\large{\underline{Answer}:}}}

  • y = 4
Similar questions