Solve y"+ (cos x) y= 0 .
Answers
Answered by
0
Answer:
y=∑n=0∞ann!xn
y′=∑n=1∞an(n−1)!xn−1=∑n=0∞an+1n!xn
y′′=∑n=2∞an(n−2)!xn−2=∑n=0∞an+2n!xn
y′′−2y′+y=0
∑n=0∞(an+2n!xn−2an+1n!xn+ann!xn)=0
∑n=0∞(an+2−2an+1+an)xnn!=0
an+2−2an+1+an=0
an+2=2an+1−an
a0=a0,a1=a1
a2=2a1−a0
a3=2(2a1−a0)−a1=3a1−2a0
a4=2(3a1−2a0)−(2a1−a0)=4a1−3a0
⋯
an=na1−(n−1)a0=a0+n(a1−a0)
y=∑n=0∞ann!xn=∑n=0∞a0+n(a1−a0)n!xn=∑n=0∞a0n!xn+∑n=1∞(a1−a0)(n−1)!xn=a0∑n=0∞xnn!+(a1−a0)∑n=0∞xn+1n!=a0∑n=0∞xnn!+(a1−a0)x∑n=0∞xnn!
y=c1ex+c2xex
Step-by-step explanation:
please mark me as brainliest
Answered by
1
Answer:
bxvdgd djdvfc rgcxxt hhd the he d fus. c down be hr rghr r the d tgrbd f thbd d dvhfr. dvdjd f
Similar questions