Solve y = p tan p + log (cos p), where, =
Answers
Answered by
3
Given
y=p\tan p+\log (\cos p)
Differentiating the above w.r.t. x
\frac{dy}{dx}=p\sec^p\frac{dp}{dx}+\tan p\frac{dp}{dx}+\frac{1}{\cos p}\times(-\sin p)\frac{dp}{dx}
\implies p=p\sec^p\frac{dp}{dx}+\tan p\frac{dp}{dx}-\tan p\frac{dp}{dx}
\implies p=p\sec^2p\frac{dp}{dx}
\implies \sec^2p dp=dx
\implies\int \sec^2p dp=\int dx
\implies \tan p=x+c where c is a constant
\implies x=\tan p-c
Thus,
y=p\tan p+\log (\cos p) and x=\tan p-c is parametric solution of the equation, where p is a parameter...................
Similar questions
Art,
4 months ago
Math,
4 months ago
Business Studies,
4 months ago
Science,
8 months ago
English,
11 months ago
Political Science,
11 months ago