Math, asked by anuj16495, 10 months ago

Solve y = p tan p + log (cos p),

where, p =dy/dx

Answers

Answered by sonuvuce
4

In parametric form, the solution is

y=p\tan p+\log (\cos p) and x=\tan p-c

In non-parametric form, the solution is

y=(x+c)\tan^{-1}(x+c)+\log (\cos (\tan^{-1}(x+c)))

Step-by-step explanation:

Given

y=p\tan p+\log (\cos p)

Differentiating the above w.r.t. x

\frac{dy}{dx}=p\sec^p\frac{dp}{dx}+\tan p\frac{dp}{dx}+\frac{1}{\cos p}\times(-\sin p)\frac{dp}{dx}

\implies p=p\sec^p\frac{dp}{dx}+\tan p\frac{dp}{dx}-\tan p\frac{dp}{dx}

\implies p=p\sec^2p\frac{dp}{dx}

\implies \sec^2p dp=dx

\implies\int \sec^2p dp=\int dx

\implies \tan p=x+c    where c is a  constant

\implies x=\tan p-c

Thus,

y=p\tan p+\log (\cos p) and x=\tan p-c is parametric solution of the equation, where p is a parameter

If we eliminate p

\tan p=x+c

\implies p=\tan^{-1}(x+c)

Thus,

y=\tan^{-1}(x+c)\tan (\tan^{-1}(x+c))+\log (\cos (\tan^{-1}(x+c)))

\implies y=(x+c)\tan^{-1}(x+c)+\log (\cos (\tan^{-1}(x+c)))

Hope this answer is helpful.

Know More:

Q: Solve differential equation y=sin p-p cos p?​.

Click Here: https://brainly.in/question/8913440

Similar questions