Math, asked by Basil0, 1 year ago

solve y= psinp +cosp

Attachments:

Answers

Answered by jagroop1
5
y=p sinp +cosp, differentiating both sides, dy/dp=(1)sinp+(cosp)p -sinp, dy/dx=sinp+p cosp -sinp,dy/dx=p cosp
Answered by pinquancaro
1

Answer:

\frac{dy}{dp}=p\cos p

Step-by-step explanation:

Given : Expression y=p\sin p+\cos p

To find : Solve the expression ?

Solution :

y=p\sin p+\cos p

Differentiate equation both the sides w.r.t 'p'

\frac{d}{dp}(y)=\frac{d}{dp}(p\sin p+\cos p)

\frac{dy}{dp}=\frac{d}{dp}(p\sin p)+\frac{d}{dp}(\cos p)

Apply product rule, \frac{d}{dx} (a.b)=a\times \frac{d}{dx}(b)+b\times \frac{d}{dx}(a)

\frac{dy}{dp}=p\frac{d}{dp}(\sin p)+\sin p\frac{d}{dp}(p)+\frac{d}{dp}(\cos p)

\frac{dy}{dp}=p\cos p+\sin p-\sin p

\frac{dy}{dp}=p\cos p

Therefore, \frac{dy}{dp}=p\cos p

Similar questions