Math, asked by amrithas400, 9 months ago

solve (y-x)dy/dx + (2x+3y)=0​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

(y - x) \frac{dy}{dx}  + (2x + 3y)  = 0\\

 \implies(y - x) \frac{dy}{dx}  =   - (2x + 3y) \\

 \implies \frac{dy}{dx}  =   -  \frac{(2x + 3y) }{ (y - x) }\\

 \implies \frac{dy}{dx}  =    \frac{2x + 3y }{ x - y}\\

 Let\: \: y=vx\\

 \implies\frac{dy}{dx}=v+x\frac{dv}{dx}\\

So,

v + x \frac{dv}{dx}  =    \frac{2x + 3vx}{ x - vx}\\

 \implies \: v + x \frac{dv}{dx}  =    \frac{x(2 + 3v)}{ x (1- v)}\\

 \implies \: v + x \frac{dv}{dx}  =    \frac{2 + 3v}{1- v}\\

 \implies \: x \frac{dv}{dx}  =    \frac{2 + 3v}{1- v} - v\\

 \implies \: x \frac{dv}{dx}  =    \frac{2 + 3v - v +  {v}^{2} }{1- v} \\

 \implies \: x \frac{dv}{dx}  =    \frac{  {v}^{2}  + 2v + 2}{1- v} \\

 \implies \: \frac{1 -  v}{ {v}^{2}  + 2v + 2} dv  =   \frac{1}{x} dx   \\

 \implies \:  \int\frac{1 -  v}{ {v}^{2}  + 2v + 2} dv  =    \int\frac{1}{x} dx   \\

 \implies \:   \frac{1}{2} \int\frac{2 -  2v}{ {v}^{2}  + 2v + 2} dv  =    \int\frac{1}{x} dx   \\

 \implies \:   \frac{1}{2} \int\frac{ - 2 -  2v + 2}{ {v}^{2}  + 2v + 2} dv  =    \int\frac{1}{x} dx   \\

 \implies \:   \frac{1}{2} \int\frac{ - 2 -  2v }{ {v}^{2}  + 2v + 2} dv +  \frac{1}{2}  \int \frac{2}{ {v}^{2} + 2v + 2 }dv    =    \int\frac{1}{x} dx   \\

 \implies \:    - \frac{1}{2} \int\frac{ 2v  + 2}{ {v}^{2}  + 2v + 2} dv +   \int \frac{1}{ {v}^{2} + 2v + 2 }dv    =    \int\frac{1}{x} dx   \\

In the first integral, in numerator, derivative of denominator is present,

So,

we have,

 \implies \:    - \frac{1}{2}   \ln | {v}^{2}  + 2v + 2 |  + c _{1}  +   \int \frac{1}{ {v}^{2} + 2v  + 1 + 1 }dv    =    \int\frac{1}{x} dx   \\

 \implies \:    - \frac{1}{2}   \ln | {v}^{2}  + 2v + 2 |  +c _{1} +   \int \frac{1}{ {(v + 1)}^{2}  + 1 }dv    =     \ln | x |  +   c _{3} \\

 \implies \:    - \frac{1}{2}   \ln | {v}^{2}  + 2v + 2 | +    c _{1}\tan^{ - 1}  (v + 1) +    c _{2} =     \ln | x |  +   c _{3}\\

 \implies \:    - \frac{1}{2}   \ln | {v}^{2}  + 2v + 2 |   +     \tan^{ - 1}  (v + 1) +   =     \ln | x |  + C \:  \:  \:  \:  \:  \{  \sf{where \: \: C = c_{3} -c_{2} - c_{1}}\}\\

 \implies \:    -    \ln  \sqrt{{v}^{2}  + 2v + 2 }  +     \tan^{ - 1}  (v + 1) +   =     \ln | x |  + C \\

 \implies \:         \tan^{ - 1}  (v + 1)    =     \ln | x |   +    \ln  \sqrt{{v}^{2}  + 2v + 2 } + C \\

Put  v=\frac{y}{x}\\

 \implies \:         \tan^{ - 1}   \bigg( \frac{y}{x}  + 1 \bigg)    =     \ln | x |   +    \ln   \bigg\{ \sqrt{{  \bigg(\frac{y}{x} \bigg) }^{2}  + 2  \bigg(\frac{y}{x} \bigg)  + 2 } \bigg \} + C \\

 \implies \:         \tan^{ - 1}   \bigg( \frac{x + y}{x}  \bigg)    =     \ln | x |   +    \ln   \bigg\{ \sqrt{ \frac{y ^{2} }{ {x}^{2} }    + 2 \frac{y}{x}  + 2 } \bigg \} + C \\

 \implies \:         \tan^{ - 1}   \bigg( \frac{x + y}{x}  \bigg)    =     \ln | x |   +    \ln   \bigg\{ \sqrt{ \frac{y ^{2}  + 2xy + 2 {x}^{2} }{ {x}^{2} }    } \bigg \} + C \\

 \implies \:         \tan^{ - 1}   \bigg( \frac{x + y}{x}  \bigg)    =     \ln | x |   +     \ln\frac{ \sqrt{y ^{2}  + 2xy + 2 {x}^{2} }}{  |x|  }    + C \\

 \implies \:         \tan^{ - 1}   \bigg( \frac{x + y}{x}  \bigg)    =     \ln | x |   +     \ln\sqrt{y ^{2}  + 2xy + 2 {x}^{2} }    -  \ln |x| + C \\

 \implies \:         \tan^{ - 1}   \bigg( \frac{x + y}{x}  \bigg)    =         \ln\sqrt{y ^{2}  + 2xy + 2 {x}^{2} }   + C \\

Similar questions