Math, asked by wdj23717, 2 months ago

solve (y-x(dy/dx))=2y^2+dy/dx.
pls give step-by-step answer.​

Answers

Answered by amansharma264
4

EXPLANATION.

\implies y - x \bigg(\dfrac{dy}{dx} \bigg) = 2y^{2}  + \dfrac{dy}{dx}

As we know that,

We can write equation as,

\implies y = 2y^{2}  + \dfrac{dy}{dx}  + x \bigg(\dfrac{dy}{dx} \bigg)

\implies y - 2y^{2}  = (1 + x) \dfrac{dy}{dx}

\implies (y - 2y^{2} ) dx = (1 + x)dy

\implies \dfrac{dx}{(1 + x)}  = \dfrac{dy}{(y - 2y^{2}) }

Integrate both sides of the equation, we get.

\implies \displaystyle \int \dfrac{dx}{(1 + x)} = \int \dfrac{dy}{( y - 2y^{2}) }

\implies \displaystyle \int \dfrac{dx}{(1 + x)} \ = ln(1 + x)

\implies \displaystyle \int \dfrac{dy}{(y - 2y^{2} )} \ = \int \dfrac{dy}{y(1 - 2y)}

As we know that,

Partial fractions is apply only when coefficient of denominator > coefficient of numerator.

Apply partial fractions in this equation, we get.

\implies \displaystyle \dfrac{1}{y(1 - 2y)} \ = \dfrac{A}{y} \ + \dfrac{B}{(1 - 2y)}

\implies \displaystyle 1 = A(1 - 2y) + B(y)

Put the value of y = 0 in the equation, we get.

\implies \displaystyle  1 = A(1 - 2(0)) + B(0).

\implies \displaystyle  1 = A(1).

\implies \displaystyle  A = 1. - - - - - (1).

Put the value of y = 1/2 in the equation, we get.

\implies \displaystyle  1 = A(1 - 2 \times (1/2)) + B(1/2)

\implies \displaystyle  1 = A(1 - 1) + B(1/2)

\implies \displaystyle  1 = B(1/2)

\implies \displaystyle  B = 2. - - - - - (2).

Put the value in the equation, we get.

\implies \displaystyle  \int \dfrac{A}{y} \ + \int \dfrac{B}{(1 - 2y)}

\implies \displaystyle  \int \dfrac{1.dy}{y} \ + \int \dfrac{2.dy}{(1 - 2y)}

\implies \displaystyle  ln(y) \ + \bigg(\dfrac{2}{-2} \bigg) ln(1 - 2y)

\implies \displaystyle  ln(y) - ln(1 - 2y).

Put the value in the main equation, we get.

\implies \displaystyle \int \dfrac{dx}{(1 + x)} = \int \dfrac{dy}{( y - 2y^{2}) }

\implies \displaystyle ln( 1 + x) = ln(y) - ln( 1 - 2y) + C.

\implies \displaystyle ln(1 + x) = ln \bigg|\dfrac{y}{1 - 2y} \bigg| + C

Similar questions