Math, asked by sowmyak0211, 1 month ago

Solve: (y +z)dx + (z + x)dy +(x + y)dz ​

Answers

Answered by gs22072007
0

Answer:

Given differential equation is

yz(y+z)dx +xz(x+z)dy+xy(x+y)dz = 0yz(y+z)dx+xz(x+z)dy+xy(x+y)dz=0

Let \vec{X} = yz(y+z)\hat{i} +xz(x+z)\hat{j}+xy(x+y)\hat{k}

X

=yz(y+z)

i

^

+xz(x+z)

j

^

+xy(x+y)

k

^

To check whether it is integral , \vec{X} .(\nabla\times{\vec{X}}) = 0

X

.(∇×

X

)=0

Now, \nabla\times{\vec{X}} = \begin{vmatrix} \hat{i} & \hat{j} &\hat{k}\\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} &\frac{\partial }{\partial z}\\ yz(y+z) & xz(x+z) & xy(x+y) \end{vmatrix}∇×

X

=

i

^

∂x

yz(y+z)

j

^

∂y

xz(x+z)

k

^

∂z

xy(x+y)

\nabla\times{\vec{X}} = 2x(y-z )\hat{i} - 2y(x-z)\hat{j} + 2z(x-y)\hat{k}∇×

X

=2x(y−z)

i

^

−2y(x−z)

j

^

+2z(x−y)

k

^

Now, \vec{X} .(\nabla\times{\vec{X}}) =[ yz(y+z)\hat{i} +xz(x+z)\hat{j}+xy(x+y)\hat{k} ] .[2x(y-z )\hat{i} - 2y(x-z)\hat{j} + 2z(x-y)\hat{k}] = 0

X

.(∇×

X

)=[yz(y+z)

i

^

+xz(x+z)

j

^

+xy(x+y)

k

^

].[2x(y−z)

i

^

−2y(x−z)

j

^

+2z(x−y)

k

^

]=0

Hence it it intergrable.

Let y = ux \implies dy = xdu + udxy=ux⟹dy=xdu+udx

and z = vx \implies dz = vdx+xdvz=vx⟹dz=vdx+xdv

Then partial differential equation will be reduced to the form

uxvx(ux+vx)dx + vx^2(x+vx)(udx+xdu) + ux^2(x+ux)(vdx+xdv) = 0uxvx(ux+vx)dx+vx

2

(x+vx)(udx+xdu)+ux

2

(x+ux)(vdx+xdv)=0

It can be further reduced to

\frac{dx}{x} + \frac{du}{2u}+\frac{dv}{2v}-\frac{du}{2(u+v+1)}-\frac{dv}{2(u+v+1)} = 0

x

dx

+

2u

du

+

2v

dv

2(u+v+1)

du

2(u+v+1)

dv

=0

Integrating it, we get

\frac{x^2 uv}{u+v+1} = C

u+v+1

x

2

uv

=C

putting values of u and v,

xyz = C(x+y+z)xyz=C(x+y+z)

Similar questions