Math, asked by Diya208, 1 year ago

Solve (ylogx-2)ydx-xdy=0

Answers

Answered by Dhanushswamy53
27
This is the Bernoulli's equation solution...
Attachments:
Answered by sarahssynergy
4

Solve the given differential equation (ylogx-2)ydx-xdy=0

Explanation:

  • given is the differential equation in non- linear form. we convert it to linear differential equation of the form    \frac{dt}{dx}+Pt=Q\\    here, P and Q are functions of 'x' and t is a function of 'y'.  
  • Its solution is given by , t(I.F)=\int\ {Q(I.F)} \, dx
  • here I.F stands for integrating factor is given as, I.F=e^{\int{P} \, dx }
  • hence now we have,                                                                                       (ylogx-2)ydx-xdy=0\\y^2logx(dx)-2y(dx)-x(dy)=0\\(y^2xdx)(\frac{logx}{x}-\frac{2}{x}y^{-1}-y^{-2}\frac{dy}{dx})=0\\\\y^{-2}\frac{dy}{dx}+\frac{2}{x}y^{-1}=\frac{logx}{x}
  • now equating y^{-1}=t\ \ \ \ \ \ \ \ ->y^{-2}\frac{dy}{dx}  =-\frac{dt}{dx}  in above equation,                       -\frac{dt}{dx}+\frac{2t}{x}=\frac{logx}{x}   \\->\frac{dt}{dx}-\frac{2t}{x}=-\frac{logx}{x}\ \ \ \ \ \ \     -----> \frac{dt}{dx}+Pt=Q  
  • hence we have , P=\frac{-2}{x} \ \ \ \ Q=-\frac{logx}{x}  we get the I.F and solution as,            I.F=e^{\int {P} \, dx }=e^{-2\int {\frac{1}{x} } \, dx } \\I.F=e^{-2logx}= e^{logx^{-2}}\\->I.F=x^{-2}  \\Solution\ of\ the\ equation\ is,\ \ \ \ t(I.F)=\int\ {Q(I.F)} \, dx  \\->t(x^{-2})=\int\ {-\frac{logx}{x^3} }\,dx\\\\->\frac{t}{x^2}= \frac{2logx+1}{4x^2} +C\\
  • now putting the value of 't' back we get the final solution of the differential equation as  \frac{1}{yx^2}=\frac{2logx+1}{4x^2}+C              

Similar questions