Solve yzdx + xzdy + xydz = 0
Answers
Answered by
0
Answer:
I =∫yzdx+xzdy+xydz
where: \IotaI = { I }_{ 1 }I
1
+{ I }_{ 2 }I
2
+{ I }_{ 3 }I
3
{ I }_{ 1 }I
1
= \int _{ 0 }^{ 1 }{ yz }∫
0
1
yz dx 0\le x \le 10≤x≤1
={ [ x ] }_{ 0 }^{ 1 }[x]
0
1
(yz) = (1-0) {yz) =yz
{ I }_{ 2 }I
2
= \int _{ 0 }^{ 1 }{ xz }∫
0
1
xz dy = 0\le y \le 10≤y≤1
= xz { [ y ] }_{ 0 }^{ 1 }[y]
0
1
=(xz) (1-0).xz
{ I }_{ 3 }I
3
= \int _{ 0 }^{ 1 }{ xy }∫
0
1
xy dz = xy { [ z ] }_{ 0 }^{ 1 }[z]
0
1
0\le z \le 10≤z≤1
= xy (1-0) = xy
\Longrightarrow⟹ \IotaI = { I }_{ 1 }I
1
+{ I }_{ 2 }I
2
+{ I }_{ 3 }I
3
\IotaI=yz+xz+xy
Step-by-step explanation:
Similar questions
Math,
26 days ago
Computer Science,
26 days ago
Social Sciences,
26 days ago
Biology,
1 month ago
Math,
9 months ago
Math,
9 months ago