Math, asked by amishamay1318, 10 months ago

Solve z (5 z²– 80) ÷ 5 z (z + 4) z - 4 z +4 z+ 2 z - 2

Answers

Answered by nusrathsultana8759
1

Step-by-step explanation:

Given: z(5z²-80) ÷ 5z(z+4)

Calculation:

First we factor numerator z(5z²-80)

Take out 5 from 5z²-80 and we get 5z(z²-16)

Now we factor 16 = 4²

5z(z²-4²)

Using formula, (a²- b²)=(a+b)(a-b)

5z(z²- 4²)⇒5z(z+4)(z-4)

Simplified fraction

5z(z+4)(z-4) ÷ 5z(z+4)

Cancel like factor from numerator and denominator

⇒ z-4

Thus, z(5z²-80) ÷ 5z(z+4) = z-4

Answered by ciola
0

Answer:

z - 4

Step-by-step explanation:

 \frac{z( {5z}^{2} - 80) }{5z(z + 4)} \\  \\ =  \frac{z \times 5( {z}^{2} - 16) }{5z(z + 4)}  \\  \\  =  \frac{5z( {z}^{2}  - 16)}{5z(z + 4)}  \\  \\  = \frac{ \cancel{5z}( {z}^{2}  - 16)}{ \cancel{5z}(z + 4)} \\  \\  =  \frac{ {z}^{2} - 16 }{z + 4}  \\  \\  =  \frac{(z + 4)(z - 4)}{z + 4}  \\  \\  = \frac{(\cancel{ z + 4})(z - 4)}{ \cancel{ z + 4}} \\  \\  = \underline{ \underline{ z - 4}}

Similar questions