Math, asked by LijaKumariRath, 9 months ago

solve1/x+1/x+1-2/x-1=0​

Answers

Answered by kushalchauhan07
3

Step-by-step explanation:

 \frac{1}{x}  +  \frac{1}{x + 1}  -  \frac{2}{x - 1}  = 0

 \frac{(x - 1)^{2} + x(x - 1) - 2x(x - 1)}{x(x - 1)^{2} }  = 0

 {x}^{2} + 1 - 2x +  {x}^{2} - x -  {2x}^{2} + 2 = 0

 - 3x + 3 = 0

 - 3x =  - 3

x =  \frac{3}{3}  = 1

x = 1

Answered by kumarmilesh07
0

Answer:

x

1

+

x+1

1

x−1

2

=0

⇒\frac{(x - 1)^{2} + x(x - 1) - 2x(x - 1)}{x(x - 1)^{2} } = 0

x(x−1)

2

(x−1)

2

+x(x−1)−2x(x−1)

=0

⇒{x}^{2} + 1 - 2x + {x}^{2} - x - {2x}^{2} + 2 = 0x

2

+1−2x+x

2

−x−2x

2

+2=0

⇒- 3x + 3 = 0−3x+3=0

⇒- 3x = - 3−3x=−3

⇒x = \frac{3}{3} = 1x=

3

3

=1

⇒x = 1x=1

Similar questions