Math, asked by aditya7724811944, 10 months ago

solved __________________-​

Attachments:

Answers

Answered by KINGofDEVIL
86

 \huge{\orange{ \underline{ \overline{ \boxed{ \sf{\blue{ANSWER}}}}}}}

\sf{ \green{ \underline{ \underline{GIVEN  : }}}}

  • ABC is an equilateral triangle with side 'a'.
  • AD is the Altitude of the triangle.

\sf{ \green{ \underline{ \underline{TO  \:  \: FIND : }}}}

  • Length of the Altitude.

 \sf{ \green{ \underline{ \underline{SOLUTION : }}}}

As, AD is the Altitude of the triangle ABC. So it bisects the base BC perpendicularly, because we know altitude of divides an equilateral triangle in two equal halves.

Therefore, BD = CD and Ang. ADB = Ang. ADC = 90°.

 \boxed{  \therefore \:  \sf \: We \: got \: AD  = CD  =  \frac{a}{2}}

Now, from right angle triangle ADB, using Pythagoras Theorem

  \boxed{\sf{\:  {AB}^{2}  =  {AD}^{2}  +  {BD}^{2} }}

On putting the values of AB, AD and BD we get,

  \implies \: \sf{\:  {a}^{2}  =  {AD}^{2}  +  {( \frac{a}{2}) }^{2} }

\implies \: \sf{\:  {a}^{2}  =  {AD}^{2}  +  \frac{ {a}^{2} }{4} }

\implies \: \sf{\:  {a}^{2}  =  \frac{ {  {4AD}^{2}  \: +   \: a}^{2} }{4} }

[On cross multiplication,]

\implies \: \sf{\:  {4a}^{2}  =  {  {4AD}^{2}  \: +   \: a}^{2}}

\implies \: \sf{\:  {4a}^{2}   -  {a}^{2} =  {  {4AD}^{2}}}

\implies \: \sf{\: {4AD}^{2}} =  {3a}^{2}

\implies \: \sf{\: {AD}^{2}} =   \frac{3}{4} {a}^{2}

\implies \: \sf{\:  \sqrt{{AD}^{2}}}  =   \sqrt{ \frac{3 {a}^{2} }{4} }

 \boxed{\therefore \: \sf{\: {AD} =    \frac{ \sqrt{3}a }{2}}  \: unit}

Therefore, the length of the Altitude AD is \sf </u></strong><strong><u>{</u></strong><strong><u>\frac{ \sqrt{3}a}{2}</u></strong><strong><u> \: unit } .

#answerwithquality #BAL

Similar questions