Math, asked by riyag9926, 5 months ago

solved this answers the correct answer is 1/secA-tanA​

Attachments:

Answers

Answered by byritesh7483
3

Answer:

  \frac{ \sin( \alpha ) -  \cos( \alpha )   + 1}{ \sin( \alpha )  +  \cos( \alpha ) - 1 }

Divide by cos(α) on both num. and den.

 = \frac{ \tan( \alpha )  - 1 +  \sec( \alpha ) }{ \tan( \alpha ) + 1 -  \sec( \alpha )  }

re-arrage them,

 = \frac{ \tan( \alpha ) +  \sec( \alpha )  - 1 }{ \tan( \alpha )  -  \sec( \alpha ) + 1 }

use sec^2(α)-tan^2(α)=1

 =  \frac{ \tan( \alpha )  +  \sec( \alpha ) - 1 }{ \tan( \alpha )  -  \sec( \alpha ) +    \sec^{2} ( \alpha ) -  { \tan}^{2} ( \alpha )  }

a^2-b^2=(a+b)(a-b)

  =  \frac{ \tan( \alpha )  +  \sec( \alpha )  - 1}{( \sec( \alpha )  +  \tan( \alpha ) )( \sec( \alpha ) -  \tan( \alpha ) ) - ( \sec( \alpha )   -   \tan( \alpha ) ) }

taking common out from denominator,

 =   \frac{ \tan( \alpha )  \:    + \:    \sec( \alpha ) - 1 }{( \sec( \alpha )  -   \tan( \alpha ))( \sec( \alpha )    +  \:  \tan( \alpha )  - 1)  }

cancel the common terms,

 \frac{1}{ \sec( \alpha ) -  \tan( \alpha )  }

hence proved

hope helps you!!!!!!!

Similar questions