solveeeeeeeeeeee 50 pts question in detaile.....
( Q.21. => 8. plz
Attachments:
Answers
Answered by
2
=======================
Given,
Quadratic equation = ax² + bx + c.
α and ß are its zeroes.
Now,
= a { ( α² / ß ) + ( ß² / α ) } + b { ( α / ß ) + ( ß / α ) }
= a { ( α³ + ß³ ) / αß } + b { ( α² + ß² ) / αß }
We know the relationship between zeroes and coefficient of quadratic equation,
Equation = ax² + bx + c
Here,
Coefficient of x² = a
Coefficient of x = b
Constant term = c
Sum of zeroes = -b / a
α + ß = -b / a.
Product of zeroes = c / a
αß = c / a.
Now,
⇒ α² + ß² = ( α + ß )² - 2αß
⇒ α² + ß² = ( -b/a )² - 2 ( c/a )
⇒ α² + ß² = ( b² / a² ) - ( 2c / a )
⇒ α² + ß² = ( b² - 2ac ) / a²
Now,
⇒ α³ + ß³ = ( α + ß ) ( α² + ß² - αß )
⇒ α³ + ß³ = ( -b/a ) [ { ( b² - 2ac )/a² } - ( c/a ) ]
⇒ α³ + ß³ = ( -b/a ) { ( b² - 2ac - ac ) } / a²
⇒ α³ + ß³ = ( -b/a ) ( b² - 3abc ) ./ a²
⇒ α³ + ß³ = ( -b³ + 3abc ) / a³.
Now,
= a { ( α³ + ß³ ) / αß } + b { ( α² + ß² ) / αß }
= a { ( -b³ + 3abc ) / a³ ÷ ( c / a ) } + b { ( b² - 2ac ) / a² ÷ ( c /a ) }
= a [ { ( -b³ + 3abc ) / a³ } × ( a/c ) ] + b [ { ( b² - 2ac ) / a² } × ( a/c ) ]
= a { ( -b³ + 3abc ) / a²c } + b { ( b² - 2ac ) / ac }
= { ( -b³ + 3abc ) / ac } + { ( b³ - 2abc ) / ac }
= ( -b³ + 3abc + b³ - 2abc ) / ac
= ( abc ) / ac
= b.
Hope it helps !!
Given,
Quadratic equation = ax² + bx + c.
α and ß are its zeroes.
Now,
= a { ( α² / ß ) + ( ß² / α ) } + b { ( α / ß ) + ( ß / α ) }
= a { ( α³ + ß³ ) / αß } + b { ( α² + ß² ) / αß }
We know the relationship between zeroes and coefficient of quadratic equation,
Equation = ax² + bx + c
Here,
Coefficient of x² = a
Coefficient of x = b
Constant term = c
Sum of zeroes = -b / a
α + ß = -b / a.
Product of zeroes = c / a
αß = c / a.
Now,
⇒ α² + ß² = ( α + ß )² - 2αß
⇒ α² + ß² = ( -b/a )² - 2 ( c/a )
⇒ α² + ß² = ( b² / a² ) - ( 2c / a )
⇒ α² + ß² = ( b² - 2ac ) / a²
Now,
⇒ α³ + ß³ = ( α + ß ) ( α² + ß² - αß )
⇒ α³ + ß³ = ( -b/a ) [ { ( b² - 2ac )/a² } - ( c/a ) ]
⇒ α³ + ß³ = ( -b/a ) { ( b² - 2ac - ac ) } / a²
⇒ α³ + ß³ = ( -b/a ) ( b² - 3abc ) ./ a²
⇒ α³ + ß³ = ( -b³ + 3abc ) / a³.
Now,
= a { ( α³ + ß³ ) / αß } + b { ( α² + ß² ) / αß }
= a { ( -b³ + 3abc ) / a³ ÷ ( c / a ) } + b { ( b² - 2ac ) / a² ÷ ( c /a ) }
= a [ { ( -b³ + 3abc ) / a³ } × ( a/c ) ] + b [ { ( b² - 2ac ) / a² } × ( a/c ) ]
= a { ( -b³ + 3abc ) / a²c } + b { ( b² - 2ac ) / ac }
= { ( -b³ + 3abc ) / ac } + { ( b³ - 2abc ) / ac }
= ( -b³ + 3abc + b³ - 2abc ) / ac
= ( abc ) / ac
= b.
Hope it helps !!
Anonymous:
What ?
Answered by
5
Hey mate!
Kindly refer to the given attachments above!
Hope it helps you!
Kindly refer to the given attachments above!
Hope it helps you!
Attachments:
Similar questions