Solvekarne for 14and 15questions please do fast
Attachments:
Answers
Answered by
0
14)
x2+kx+k,k≠0
roots or zeroes=(-k+√(k∧2-4k))/2,(-k-√(k∧2-4k))/2
since k≠0 ,roots can't be zero
the nature of root depends on √(k∧2-4k )
k<0 then √(k∧2-4k)>k so roots will be one positive and one negative
if k>0 then √(k∧2-4k) < k both roots will be negative
so both roots can't be positive
15)
let the numbers be x, x+1, x-1
from the given information
x^2 =( x-1)^2 - (x+1)^2 + 60
x^2= 4x +60
x^2-4x+60=0
(x-10)(x+6)
therefore x= 10, -6
since x is a natural no, x=10
thus, the consecutive numbers are 9,10,11
Similar questions
roots are equal so, D = b² -4ac =0
{2(ab + cd)}² -4(a² +b²)(c² + d²) =0
4(ab+ cd)² -4(a² + b²)(c²+ d²) =0
( a²b²+c²d² +2abcd ) -a²c²-a²d²-b²d² -b²c² =0
-a²c² -b²d² + 2abcd =0
-( a²c² + b²d² -2abcd) =0
{(ac-bd)²} =0
ac -bd =0
ac = bd
a/b = d/c