Math, asked by bharatishita2, 1 year ago

solveof the given system of equations....

Attachments:

Answers

Answered by Anonymous
5

 \binom{99x + 101y =  499}{101x + 99y = 501}  \\  \\ solve \: for \: x \\  \\  \binom{99x + 101y = 499}{x =  \frac{501}{101} -  \frac{99}{101}y  }  \\  \\ substitute \: the \: given \: value \: in \: the \: equation \\ 99x + 101y = 499 \\  \\ 99( \frac{501}{101}  -  \frac{99}{101} y) + 101y = 499


now \: solve \: for \: y \\  \\  \frac{49599}{101}  -  \frac{9801}{101} y + 101y = 499 \\  \\  \frac{49599}{101}  +  \frac{400}{101} y = 499 \\  \\ mutiply \: both \: sides \: by \: 101 \\  \\ 49599 + 400y = 50399 \\  \\ 400y = 50399 - 49599 \\  \\ 400y = 800 \\  \\ y =  \frac{800}{400}  \\  \\ y = 2


substitute \: the \: value \: of \: y \: in \\ x =  \frac{501}{101}  -  \frac{99}{101} y \\  \\ x =  \frac{501}{101}  -  \frac{99}{101}  \times 2 \\  \\ x =  \frac{501}{101}  -  \frac{198}{101}  \\  \\ x = 3

Therefore the possible solution for the system of Equation is (x,y) = (3,2)
Answered by dvu16
1
99x+101y=499. -(1)
101x+99y=501. -(2)
adding equation 1 and 2
99x+101y+101x+99y=499+501
200x+200y=1000
200(X+y)=1000
x+y =1000÷200
x+y=5. -(3)
subtracting 1 and 3
101x-99y+99y-101y=501-499
2x-2y=2
2(X+y)=2
x-y=2÷2
x-y =1. (4)
adding 4 and 3
2x=5+1
x=6÷2=3
putting X=3 in equation (3)
3+y=5
y=5-3=2
Hence, X=3,y=2

I hope this will help you
Similar questions