Math, asked by jshruti240, 2 months ago

solving equation (see the question) following roots are obtain .

Attachments:

Answers

Answered by rishu6845
1

Answer:

  \boxed{\boxed {\boxed { \bold{ \huge{ \pink{x =  - 4p \: or \: 3p}}}}}}

Step-by-step explanation:

 \dfrac{x +  \sqrt{12p - x} }{x -  \sqrt{12p - x} }  =  \dfrac{ \sqrt{p} + 1 }{ \sqrt{p}  - 1}  \\  \pink{ \bold{applying \: componendo \: and \: dividendo}} \\  \dfrac{x +  \sqrt{12p - x} + x -  \sqrt{12p - x   }   }{x +  \sqrt{12p - x } - x +  \sqrt{12p - x}  }  =  \dfrac{ \sqrt{p} + 1 +  \sqrt{p}  - 1 }{ \sqrt{p} + 1 -  \sqrt{p}   + 1}  \\  \dfrac{2x}{2 \sqrt{12p - x} }  =  \dfrac{2 \sqrt{p} }{2}  \\  \dfrac{x}{ \sqrt{12p - x } }  =  \sqrt{p}  \\ x =  \sqrt{p}  \sqrt{12p - x}  \\  \bold{ \blue{squaring \: both \: sides}} \\  {x}^{2}  = p \: (12p - x) \\  {x}^{2}  = 12 {p}^{2}  - px \\  {x}^{2}  + px - 12 {p}^{2}  = 0 \\  {x}^{2}  + (4 - 3)px - 12 {p}^{2}  = 0 \\  {x}^{2}  + 4px - 3px - 12 {p}^{2}  = 0 \\  x(x + 4 p) - 3p(x + 4p) = 0 \\ (x + 4p) \: (x - 3p) = 0 \\ if \\  \: x + 4p = 0 \\ x =  - 4p \\ if \\ x - 3p = 0 \\ x = 3p

Similar questions