Math, asked by Anonymous, 4 days ago

Solving the limiting value using series expansion.
\lim_{x\to 0} \dfrac{-ln(x^2+1)+\sin^2(x)}{(cos2x-1)^2}

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \displaystyle\lim_{x\to 0} \rm \:  \dfrac{-ln(x^2+1)+\sin^2(x)}{(cos2x-1)^2} \\

If we substitute directly x = 0, we get

\rm \:  =  \:  \dfrac{-ln(1)+\sin^2(0)}{(cos(0)-1)^2} \\

\rm \:  =  \: \dfrac{ - 0 + 0}{ {(1 - 1)}^{2} }  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \:  \displaystyle\lim_{x\to 0} \rm \:  \dfrac{-ln(x^2+1)+\sin^2(x)}{(cos2x-1)^2} \\

Now, we know

\boxed{ \rm{ \:ln(1 + x) = x - \dfrac{ {x}^{2} }{2} + \dfrac{ {x}^{3} }{3} - \dfrac{ {x}^{4} }{4} +  \cdots \: }} \\

So,

\boxed{ \rm{ \:ln(1 +  {x}^{2} ) =  {x}^{2}  - \dfrac{ {x}^{4} }{2} + \dfrac{ {x}^{6} }{3} - \dfrac{ {x}^{8} }{4} +  \cdots \: }} \\

Again, we know that

\boxed{ \rm{ \:sinx = x - \dfrac{ {x}^{3} }{3!} +  \dfrac{ {x}^{5} }{5!} +  \cdots \: }} \\

So,

\rm \:  {sin}^{2}x =  {\bigg(x - \dfrac{ {x}^{3} }{3!} +  \dfrac{ {x}^{5} }{5!} +  \cdots \:\bigg) }^{2}  \\

Also,

\boxed{ \rm{ \:cosx = 1 - \dfrac{ {x}^{2} }{2!} +  \dfrac{ {x}^{4} }{4!} +  \cdots \: \: }}

So,

\boxed{ \rm{ \:cos2x = 1 - \dfrac{ {4x}^{2} }{2!} +  \dfrac{16{x}^{4} }{4!} +  \cdots \: \: }}

Now, on substituting the values, in above expression, we get

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ - {x}^{2} + \dfrac{ {x}^{4} }{2} -  \dfrac{ {x}^{6} }{3} + \dfrac{ {x}^{8} }{4} \cdots +  {\bigg(x - \dfrac{ {x}^{3} }{3!} +  \dfrac{ {x}^{5} }{5!} +  \cdots \:\bigg) }^{2} }{ {\bigg(1 - \dfrac{4{x}^{2} }{2!} +  \dfrac{16 {x}^{4} }{4!} +  \cdots \: - 1\bigg) }^{2} }

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ - {x}^{2} + \dfrac{ {x}^{4} }{2} -  \dfrac{ {x}^{6} }{3} + \dfrac{ {x}^{8} }{4} \cdots +  {x}^{2} +  \dfrac{ {x}^{6}}{ {(3!)}^{2}}  +  \cdots  - 2\dfrac{ {x}^{4} }{3!} +  \cdots }{ {\bigg(-  {2x}^{2}  +  \dfrac{16 {x}^{4} }{4!} +  \cdots \: \bigg) }^{2} }

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ \dfrac{ {x}^{4} }{2} -  \dfrac{ {x}^{6} }{3} + \dfrac{ {x}^{8} }{4} \cdots +   \dfrac{ {x}^{6}}{ {(3!)}^{2}}  +  \cdots  - \dfrac{ {x}^{4} }{3} +  \cdots }{ {x}^{4}  {\bigg(-  2  +  \dfrac{16 {x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ \bigg(\dfrac{{x}^{4} }{2} -  \dfrac{ {x}^{4} }{3}\bigg) -  \dfrac{ {x}^{6} }{3} + \dfrac{ {x}^{8} }{4} \cdots +   \dfrac{ {x}^{6}}{ {(3!)}^{2}}  +  \cdots \cdots }{ {x}^{4}  {\bigg(-  2  +  \dfrac{16 {x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ \dfrac{{x}^{4} }{6}-  \dfrac{ {x}^{6} }{3} + \dfrac{ {x}^{8} }{4} \cdots +   \dfrac{ {x}^{6}}{ {(3!)}^{2}}  +  \cdots \cdots }{ {x}^{4}  {\bigg(-  2  +  \dfrac{16 {x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ {x}^{4} \bigg(\dfrac{1}{6}-  \dfrac{ {x}^{2} }{3} + \dfrac{ {x}^{4} }{4} \cdots +   \dfrac{ {x}^{2}}{ {(3!)}^{2}}  +  \cdots \cdots \bigg)}{ {x}^{4}  {\bigg(-  2  +  \dfrac{16 {x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  = \displaystyle\lim_{x\to 0}\rm \: \dfrac{ \dfrac{1}{6}-  \dfrac{ {x}^{2} }{3} + \dfrac{ {x}^{4} }{4} \cdots +   \dfrac{ {x}^{2}}{ {(3!)}^{2}}  +  \cdots \cdots}{{\bigg(-  2  +  \dfrac{16 {x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  =  \: \dfrac{\dfrac{1}{6} }{ \:  \:  \:  {( - 2)}^{2} \:  \:  \:  \:  }  \\

\rm \:  =  \: \dfrac{1}{24}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:  \displaystyle\lim_{x\to 0} \rm \:  \dfrac{-ln(x^2+1)+\sin^2(x)}{(cos2x-1)^2}  =  \frac{1}{24} \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions