Math, asked by shikha9009, 1 year ago

solvr!!!!!!!!!!!iii​

Attachments:

Answers

Answered by AJAYMAHICH
6

LHS = (3 - 4 sin2A)/(4cos2A - 3)

RHS = (3 - tan2A)/(1 - 3 tan2A)

= (3 - 4 + 4 cos2A)/(4cos2A - 3)

= (3 - sin2A/cos2A)/( 1 - 3 sin2A/cos2A)

= ( 4 cos2A - 1)/( 4 cos2A -3)

= ( 3 cos2A - sin2A)/(cos2A - 3 sin2A)

= ( 3 cos2A - 1 + cos2A)/(cos2A - 3 + 3 cos2A)

= ( 4 cos2A - 1)/ (4 cos2A - 3)

LHS = RHS

Hence Proved

Answered by amritanshu6563
8

Step-by-step explanation:

This question is related to the trignometry. In this question we have to prove that LHS = RHS.

Here,

LHS = (3-4sin²A)/(4cos²A-3)

RHS = (3-tan²A)/(1-3tan²A)

Now, solve this question.

= (3-4+4cos²A)/(4cos²A-3)

= (3-sin²A/cos²A)/(1-3sin²A/cos²A)

= (4cos²A-1)/(4cos²A-3)

= (3cos²A-sin²A)/(cos²A-3sin²A)

= (3cos²A-1+cos²A)/(cos²A-3+3cos²A)

= (4cos²A-1)/(4cos²A-3)

.°. LHS = RHS

Hence Proved

Similar questions