solvr!!!!!!!!!!!iii
Attachments:
Answers
Answered by
6
LHS = (3 - 4 sin2A)/(4cos2A - 3)
RHS = (3 - tan2A)/(1 - 3 tan2A)
= (3 - 4 + 4 cos2A)/(4cos2A - 3)
= (3 - sin2A/cos2A)/( 1 - 3 sin2A/cos2A)
= ( 4 cos2A - 1)/( 4 cos2A -3)
= ( 3 cos2A - sin2A)/(cos2A - 3 sin2A)
= ( 3 cos2A - 1 + cos2A)/(cos2A - 3 + 3 cos2A)
= ( 4 cos2A - 1)/ (4 cos2A - 3)
LHS = RHS
Hence Proved
Answered by
8
Step-by-step explanation:
This question is related to the trignometry. In this question we have to prove that LHS = RHS.
Here,
LHS = (3-4sin²A)/(4cos²A-3)
RHS = (3-tan²A)/(1-3tan²A)
Now, solve this question.
= (3-4+4cos²A)/(4cos²A-3)
= (3-sin²A/cos²A)/(1-3sin²A/cos²A)
= (4cos²A-1)/(4cos²A-3)
= (3cos²A-sin²A)/(cos²A-3sin²A)
= (3cos²A-1+cos²A)/(cos²A-3+3cos²A)
= (4cos²A-1)/(4cos²A-3)
.°. LHS = RHS
Hence Proved
Similar questions