Math, asked by Anonymous, 5 months ago

solvw these questions ​

Attachments:

Answers

Answered by hotcupid16
20

Given,

\displaystyle\longrightarrow I=\dfrac{2}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{\left(1+e^{\sin x}\right)(2-\cos(2x))}\ dx\quad\quad\dots(1)

We're familiar with the integral identity,

\displaystyle\int\limits_a^bf(x)\ dx=\int\limits_a^bf(a+b-x)\ dx

Here,

f(x)=\dfrac{1}{\left(1+e^{\sin x}\right)(2-\cos(2x))}

a=-\dfrac{\pi}{4}

b=\dfrac{\pi}{4}

So,

\longrightarrow f(a+b-x)=\dfrac{1}{\left(1+e^{\sin\left(-\frac{\pi}{4}+\frac{\pi}{4}-x\right)}\right)\big(2-\cos\left(2\left(-\frac{\pi}{4}+\frac{\pi}{4}-x\right)\right)\big)}

\longrightarrow f(a+b-x)=\dfrac{1}{\left(1+e^{\sin\left(-x\right)}\right)\big(2-\cos\left(-2x\right)\big)}

\longrightarrow f(a+b-x)=\dfrac{1}{\left(1+e^{-\sin x}\right)\big(2-\cos\left(2x\right)\big)}

Applying the identity we get,

\displaystyle\longrightarrow I=\dfrac{2}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{\left(1+e^{-\sin x}\right)(2-\cos(2x))}\ dx

\displaystyle\longrightarrow I=\dfrac{2}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{\left(1+\frac{1}{e^{\sin x}}\right)(2-\cos(2x))}\ dx

\displaystyle\longrightarrow I=\dfrac{2}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{e^{\sin x}}{\left(1+e^{\sin x}}\right)(2-\cos(2x))}\ dx\quad\quad\dots(2)

Adding (1) and (2),

\displaystyle\longrightarrow 2I=\dfrac{2}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1+e^{\sin x}}{\left(1+e^{\sin x}}\right)(2-\cos(2x))}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{2-\cos(2x)}\ dx

Since \cos(2x)=2\cos^2x-1,

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{2-(2\cos^2x-1)}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{3-2\cos^2x}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{1}{3-\frac{2}{\sec^2x}}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{\sec^2x}{3\sec^2x-2}\ dx

Since \sec^2x=1+\tan^2x,

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{\sec^2x}{3(1+\tan^2x)-2}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{\pi}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{\sec^2x}{1+3\tan^2x}\ dx

\displaystyle\longrightarrow I=\dfrac{1}{\pi\sqrt3}\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\dfrac{\sqrt3\,\sec^2x}{1+3\tan^2x}\ dx\quad\quad\dots(3)

Let,

\longrightarrow u=\sqrt3\,\tan x

\longrightarrow du=\sqrt3\,\sec^2x\ dx

At x=-\dfrac{\pi}{4},

\longrightarrow u=\sqrt3\,\tan\left(-\dfrac{\pi}{4}\right)

\longrightarrow u=-\sqrt3

At x=\dfrac{\pi}{4},

\longrightarrow u=\sqrt3\,\tan\left(\dfrac{\pi}{4}\right)

\longrightarrow u=\sqrt3

Then (3) becomes,

\displaystyle\longrightarrow I=\dfrac{1}{\pi\sqrt3}\int\limits_{-\sqrt3}^{\sqrt3}\dfrac{1}{1+u^2}\ du

\displaystyle\longrightarrow I=\dfrac{1}{\pi\sqrt3}\Big[\tan^{-1}u\Big]_{-\sqrt3}^{\sqrt3}

\displaystyle\longrightarrow I=\dfrac{\dfrac{\pi}{3}-\left(-\dfrac{\pi}{3}\right)}{\pi\sqrt3}

\displaystyle\longrightarrow I=\dfrac{\left(\dfrac{2\pi}{3}\right)}{\pi\sqrt3}

\displaystyle\longrightarrow I=\dfrac{2}{3\sqrt3}

\displaystyle\longrightarrow I^2=\dfrac{4}{27}

\displaystyle\longrightarrow\underline{\underline{27I^2=4}}

Hence 4 is the answer.

Answered by sadafshaikh25
0

Answer:

sorry I have no answer

Step-by-step explanation:

plz follow

Similar questions